You are here
Comparing the Variational Approximation and Exact Solutions of the Straight Unstaggered and Twisted Staggered Discrete Solitons
- Date Issued:
- 2016
- Abstract/Description:
- Discrete nonlinear Schr(&)#246;dinger equations (DNSL) have been used to provide models of a variety of physical settings. An application of DNSL equations is provided by Bose-Einstein condensates which are trapped in deep optical-lattice potentials. These potentials effectively splits the condensate into a set of droplets held in local potential wells, which are linearly coupled across the potential barriers between them [3]. In previous works, DNLS systems have also been used for symmetric on-site-centered solitons [11]. A few works have constructed different discrete solitons via the variational approximation (VA) and have explored their regions for their solutions [11, 12]. Exact solutions for straight unstaggered-twisted staggered (SUTS) discrete solitons have been found using the shooting method [12].In this work, we will use Newton's method, which converges to the exact solutions of SUTS discrete solitons. The VA has been used to create starting points. There are two distinct types of solutions for the soliton's waveform: SUTS discrete solitons and straight unstaggered discrete solitons, where the twisted component is zero in the latter soliton. We determine the range of parameters for which each type of solution exists. We also compare the regions for the VA solutions and the exact solutions in certain selected cases. Then, we graphically and numerically compare examples of the VA solutions with their corresponding exact solutions. We also find that the VA provides reasonable approximations to the exact solutions.
Title: | Comparing the Variational Approximation and Exact Solutions of the Straight Unstaggered and Twisted Staggered Discrete Solitons. |
18 views
8 downloads |
---|---|---|
Name(s): |
Marulanda, Daniel, Author Kaup, David, Committee Chair Moore, Brian, Committee Member Vajravelu, Kuppalapalle, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2016 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Discrete nonlinear Schr(&)#246;dinger equations (DNSL) have been used to provide models of a variety of physical settings. An application of DNSL equations is provided by Bose-Einstein condensates which are trapped in deep optical-lattice potentials. These potentials effectively splits the condensate into a set of droplets held in local potential wells, which are linearly coupled across the potential barriers between them [3]. In previous works, DNLS systems have also been used for symmetric on-site-centered solitons [11]. A few works have constructed different discrete solitons via the variational approximation (VA) and have explored their regions for their solutions [11, 12]. Exact solutions for straight unstaggered-twisted staggered (SUTS) discrete solitons have been found using the shooting method [12].In this work, we will use Newton's method, which converges to the exact solutions of SUTS discrete solitons. The VA has been used to create starting points. There are two distinct types of solutions for the soliton's waveform: SUTS discrete solitons and straight unstaggered discrete solitons, where the twisted component is zero in the latter soliton. We determine the range of parameters for which each type of solution exists. We also compare the regions for the VA solutions and the exact solutions in certain selected cases. Then, we graphically and numerically compare examples of the VA solutions with their corresponding exact solutions. We also find that the VA provides reasonable approximations to the exact solutions. | |
Identifier: | CFE0006350 (IID), ucf:51570 (fedora) | |
Note(s): |
2016-08-01 M.S. Sciences, Mathematics Masters This record was generated from author submitted information. |
|
Subject(s): | Discrete nonlinear Schodinger equations -- Variational Approximation -- Straight unstaggered - twisted staggered discrete solitons | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0006350 | |
Restrictions on Access: | campus 2021-08-15 | |
Host Institution: | UCF |