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ABSTRACT 

Monitoring intracranial pressure (ICP) is important for patients with increased intracranial 

pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires 

high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using 

tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that 

avoids such complications. In the current study, a piezo based sensor was designed, constructed 

and used to acquire TMp signals.  The results showed that tympanic membrane waveform changed 

in morphology and amplitude with increased ICP, which was induced by changing subject position 

using a tilt table. In addition, the results suggest that TMp are affected by breathing, which has 

small effects on ICP. The newly developed piezo based brain stethoscope may be a way to monitor 

patients with increased intracranial pressure thus avoiding invasive ICP monitoring and reducing 

associated risk and cost.  
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CHAPTER 1: INTRODUCTION  

Increased intracranial pressure (ICP) can cause brain injury if left untreated. Elevated intracranial 

pressure is one of the outcomes of severe traumatic brain injury (TBI), hydrocephalus or intra-

cerebral hemorrhage [1]. Hence, monitoring ICP is a useful tool for management of these cases. 

Invasive methods of monitoring the ICP includes lumbar puncture manometry, placing ICP 

transducer at certain locations, e.g., subdural or parenchymal. Although invasive methods of 

monitoring ICP are considered the gold standard, they come with certain risks and may require 

hospital or clinic visits.  They require high clinical skill and can be costly.  Hence, non-invasive 

methods of monitoring ICP can be advantageous for patients at risk of elevated intracranial 

pressure. The objective of this study is to develop a non-invasive way of monitoring ICP using 

tympanic membrane ñpulsesò (TMp) measurements. These pulses are vibratory movements of the 

membrane that occur naturally without external excitations. 
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1.1 Cerebrospinal Fluid and Intracranial Pressure 

The cerebrospinal fluid (CSF) is a fluid that surrounds the brain ventricles, cranial and spinal  

subarachnoid spaces. 

 

Figure 1-1 CSF System Showing the CSF fluid in cranial subarachnoid space as well as ventricular places. 

[2] 

 Figure 1-1 shows the CSF locations in the cranium. CSF is formed mainly in the choroid plexuses 

which is a network of cells that produces CSF in the ventricles of the brain. The mean CSF volume 

is approximately 150 ml where 25 ml contains in the ventricles and the remaining 125 ml is found 

in the subarachnoid spaces and spinal cord. The balance between CSF secretion and absorption 

and flow resistance determines the CSF pressure, which can be measured invasively by placing a 

pressure transducer in the brain parenchyma or in the CSF spaces via external lumbar drain or 

ventricular drain. The value of the CSF pressure varies between 10 and 15 mm Hg in normal adults 
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and 3 and 4 mm Hg in healthy infants [3]. According to Monro-Kellie hypothesis [4], the cranium 

is a rigid structure surrounding the brain, which is assumed to be incompressible. The volume 

inside the skull is constant. Therefore, the components of the cranium (volume of CSF, brain, 

blood, cerebral perfusion pressure) creates a homeostasis (a stable equilibrium between inter 

dependent elements) such that the increase in volume of one element leads to a decrease in other. 

This process keeps the ICP stable in normal humans. Figure 1-2 shows the typical ICP waveform 

obtained by placing an ICP sensor in the frontal brain parenchyma through dura [5]. 

 

Figure 1-2 ICP waveform acquired by inserting ICP sensor through subdural cavity. (a) the whole duration 

of the signal (b) zoomed in version of 6 second time window. [5] 
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1.2 Inner Ear 

The human inner ear (figure 1-3) consists of two regions: the vestibular system and the cochlea. 

The vestibular system consists of saccule, utricle and semi-circular canals, which are the human 

balance organs [6]. 

 

Figure 1-3 Inner ear showing Cochlea and the vestibular system. The inner ear is filled with Perilymph and 

Endolymph. Both fluid is connected to CSF through cochlear aqueduct and endolymphatic sac respectively. 

[6] 
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The cochlear fluid system consists of perilymph and endolymph and have similar properties 

[7].While the Scala tympani and Scala Vestibuli contains perilymph, the cochlear duct contains 

endolymph.   

 

 

Figure 1-4(a): Cross sectional area of human inner ear [8].(b) Cross sectional area of cochlea. [9] 

Outside of the cochlear wall close to the semi-circular canals is the oval window, which is attached to a 

bone called stapes (figure 1-4(a)) [8]. The cochlea consists of three long tubular chambers: scala vestibuli, 

scala tympani and cochlear duct (Scala media) (figure 1-4b) separated by basilar membrane and Reissnerôs 

membrane [9]. The cochlear aqueduct, which is a bony channel between the Scala tympani and 

subarachnoid space establishes communication between the subarachnoid space and perilymphatic space.  
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1.3 Relation Between CSF Pressure and Cochlear Fluid Pressure 

Earlier study [10] suggest that pressure of the perilymph and CSF are equal in the cat. Another 

study [11] examined  the transmission of CSF pressure to middle ear fluid pressure in the cat by 

increasing the CSF pressure quickly. Results showed that both perilymphatic and endolymphatic 

pressure increased accordingly. The study suggested that in the cat the rapid change in CSF 

pressure transmitted to the cochlear fluid through the cochlear aqueduct. Other study [12] varied 

the CSF by changing blood pressure, posture, and blood gas content in the cat. Results showed 

that the change in CSF pressure were comparable to the change in perilymph pressure in all cases. 

The findings of these experimental studies suggest that changes in CSF pressure are transmitted to 

the cochlear fluid. 

1.4 Middle Ear 

The air-filled space between ear drum and the oval window of the cochlea is middle ear cavity or 

tympanic cavity. Within this cavity, there are three small connected bones forming the middle ear 

These are known as stapes, incus and malleus.  The óhammerô shaped malleus is attached to the 

tympanic membrane at one end and the óanvilô shaped incus the other. The third bone is connected 

to the incus and oval window of the cochlea. The vibration of the tympanic membrane pushes the 

malleus which vibrates against incus. This vibration is then transmitted to the stapes through incus. 

The stapes which is attached to the oval window vibrates creating pressure wave in the cochlear 

fluid.  At the base of the tympanic cavity, there is a tube that connects the tympanic cavity to nasal 

cavity called Eustachian tube. The tube allows the pressure in the tympanic cavity to be vented to 

atmosphere. Figure 1-5 shows the middle ear bones along with the tympanic membrane [9].  
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Figure 1-5 Human middle ear. [9] 

1.5 Tympanic Membrane and External Ear 

The tympanic membrane (TM) is a circular membrane that is connected to the malleus of the 

middle ear and separates the middle ear from external ear.  Earlier study [13] showed that the 

average thickness of the tympanic membrane is approximately 0.074 mm. The tympanic 

membrane transmits the vibration caused by the sound energy in the external ear to the middle ear 

ossicles. The tympanic membrane is slightly inclined at an angle of approximately 40 degree with 

the floor of the ear canal [13].  

 

Figure 1-6 Human tympanic membrane along with An: Annulus fibrosus, Lpi: Long process of incus; Um: 

Umbo, the end of malleus; Lr: Light reflex; Lp: Lateral process of the malleus; At: Pars flaccida; Hm-

handle of the malleus. [13] 
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Figure (1-6) showed a photo of tympanic membrane annotating different locations of the 

membrane [13].  

 

1.6 Variation of CSF Pressure and ICP with Respect to Body Posture 

Earlier study [14] suggested that changing body posture by tilting can lead to significant variations 

of CSF pressure. The study was done on a subject with artificial respiration. CSF pressure 

measurement was done by inserting a catheter into lateral ventricle of the brain. Another 

investigation [15] done on a dog showed that the CSF pressure varies with change in body position. 

 

Figure 1-7 Cerebrospinal fluid pressure in dog at different body posture. [14] 
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Results (figure1-7) showed that the CSF pressure increased considerably as the head and body 

tilted downward by 45 degrees while the pressure decreased slightly when the body was tilted by 

45 in the head up direction. 

In addition, the study performed variation of CSF pressure on human with pre-senile dementia and 

dilated ventricles (figure 1-8). Results showed that the CSF pressure decreased considerably as the 

subjectôs body posture changed from supine to 90 degrees. 

 

Figure 1-8 CSF pressure in man with varying body posture. [14] 

Another previous study [16] on humans, where a butterfly needle was inserted into Ommya 

reservoir (an intraventricular catheter system used for the delivery of drugs into CSF in brain) and 

connected to a pressure transducer to measure the ICP. Results showed that at microgravity, ICP 

was lower in upright sitting positions than that of supine.  
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Earlier study [17] showed that in sitting position the difference between ICP and lumbar CSF 

pressure is identical to the height of hydrostatic column. When the body position moved from 

recumbent to sitting position, the corresponding change in lumbar CSF pressure is only about 40% 

of that predicted hydrostatic column. In addition, when the body postural position moved vertically 

head down, the change in ICP was about 3-fold higher than that of head up position. The study 

suggested that in addition to hydrostatic pressure, the elasticity of lumbar thecal sac and venous 

collapse influence the change in ICP due to variation in body postures.    

1.7 Effect of Tympanic Membrane Movement on Intracranial Pressure 

Earlier studies [1], [18] suggested that ICP is related to pressure of the cochlear fluid (fluid in the 

cochlea of inner ear). In addition, CSF is connected to the inner ear via perilymphatic duct. Thus, 

ICP can be transmitted to the inner ear via CSF or cochlear fluid and finally, then through the 

middle ear bone structure to the tympanic membrane. Therefore, it may be possible to monitor 

changes in ICP by measuring the changes in the tympanic membrane pulsations (TMp).    A 

previous study [19] investigated the movement of tympanic membrane induced by the stimulation 

of stapedial reflex. The study introduced a 1000 Hz stimulus signal with varying loudness into 

subjectôs external ear canal. This induced a controlled stapedial muscle contraction and 

corresponding ossicular and tympanic membrane movement.  
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Figure 1-9 Tympanic membrane displacement for pre-and post-operative condition for a patient with 

elevated ICP with a stimulus signal of 1000 Hz. While the negative volume indicates in-ward going 

movement, the positive volume indicates out-ward going movement of the tympanic membrane. [19] 

Figure 1-9 showing tympanic membrane volume displacement with a 1000 Hz stimulus signal for 

a patient with elevated intracranial pressure before and after placing a ventriculo-peritoneal shunt 

[19]. According to the study the pre-operative tympanic membrane movement showing negative 

volume displacement indicative of elevated intracranial pressure which shifted to positive volume 

after placement of the shunt indicating reduced intracranial pressure. 

1.8 Measurement of Tympanic Membrane movement using volume displacement 

Earlier study [20] described  a technique of measuring variations in volume in the external ear due 

to the movement of tympanic membrane.  
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Figure 1-10 Tympanic membrane displacement system showing the ear canal connected to a cavity using 

a tube. The microphone measures the pressure fluctuations due to tympanic membrane movement. The 

microphone output is then sent to reference diaphragm driver unit to move the diaphragm and keep a 

constant pressure in the cavity. The microphone output is a measure of tympanic membrane movement. 

[20] 

In this system, subjectôs ear canal is connected to an external cavity (TMD servo cavity). Inside 

the cavity, there is a microphone which measures the pressure fluctuation within the space between 

tympanic membrane and the cavity. In addition, there is a reference diaphragm at one of the cavity 

wall which is driven by an external driver circuit and can induce a subtle change in the ear canal-

TMD system cavity volume (Approximately 0.04 microliters). The pressure fluctuation due to the 



13 

movement of the tympanic membrane is sensed by the microphone inside the cavity. The 

microphone output is sent to reference diaphragm driver circuit which move the diaphragm to 

cancel out the pressure fluctuation and thus keeping a constant pressure in the cavity. The volume 

displacement of the tympanic membrane is nullified by an equal and opposite volume displacement 

of the reference diaphragm. The microphone output voltage is then used as a measure of the 

tympanic membrane volume displacement. In addition, the input to the reference diaphragm is 

connected to an audiometer which can generate a range of frequencies with varying loudness. This 

is used to stimulate the system and excite the stapedius reflex in the ipsilateral (i.e., same side) 

middle ear. Figure 1-11 shows the tympanic membrane volume displacement due to excitation of 

stapedius reflex. 

 

Figure 1-11Tympanic membrane volume displacement waveform due to stapedius reflex excitation. [20] 

The TMD system is used in several studies [8], [19], [20] to investigate ICP changes in normal 

humans and patients. The system output depends on the movement of reference diaphragm. The 
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property of the reference diaphragm is not the same as tympanic membrane therefore, it cannot 

mimic the exact movement of the tympanic membrane hence, it may not completely nullify the 

pressure changes due to the movement of the tympanic membrane may cause buildup of back 

pressure on the TM itself. Hence a passive approach (without using a stimulus signal to induce 

stapedial reflex) of measuring the TM movement would therefore provide better understanding of 

how the TM moves under different physiological conditions.  

1.9 Relation between CSF Flow and Cerebral Blood Flow 

Earlier study [21] described the relation between blood and CSF volume in the skull. CSF volume 

was obtained by integrating the CSF flow while the blood volume in the cranium was obtained by 

the integration of the summation of the blood flow in the internal carotid artery, the venous and 

vertebral artery. 

 

Figure 1-12 Relation between blood and CSF volume in the brain. As the blood volume increases, the CSF 

volume decreases. The caudal flow indicates CSF flow towards spinal cord while the cranial flow indicates 

cerebral blood flow towards brain. [21] 
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In addition, the study discussed that the peak subarachnoid outflow of CSF (Maximum flow at 

subarachnoid space towards spinal cord) occurs at 15% of the cardiac cycle. Figure 1-13 shows 

the CSF and blood flow in two consecutive cardiac cycles. 

 

Figure 1-13 Blood and CSF flow rate in the cranium. There is a time delay between the peak flow of the 

two systems. [21] 

The vertebral and internal carotid systolic peak flow (ICSPF) happens approximately at 88% of 

the cardiac cycle. This suggests that there is a delay between the peak flow of the two systems. In 

addition, raised ICP changes the intracranial compliance (change in volume (ȹV) per unit change 

in ICP (ȹP) and is the inverse of elastance) of the cranium [17].In normal condition, if  intracranial 

volume (CSF, brain or blood volume) increases, the ICP will rise accordingly. This then trigger 

enhanced CSF absorption which will reduce ICP overtime. If CSF absorption process is obstructed 

due to medical conditions (traumatic brain injury, hydrocephalus), the ICP will rise leading to 

decrement of the compliance as well as the cerebral blood flow [17]. As the intracranial compliance 

changes the time interval between the cerebral blood flow and CSF peak flow may change. This 

may lead to a change in time interval between the CSF pulsations and earlobe pulsations from the 
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external carotid artery which supplies blood to earlobe. Hence a change in the CSF-earlobe 

pulsation time interval may reflect ICP variation in the cranium.  

The TMp sensor system (will be discussed in the following chapters) can acquire TMp signal and 

the earlobe blood pulsations simultaneously. The ear lobe pulse signal depicts the pulsation of 

external carotid artery due cardiac activity. The earlobe pulse signal will be used to analysis the 

effect of ICP variation on TMp signal induced by postural changes. In addition, the pulse signal 

will be used to investigate changes in time delay between TMp and blood pulse signal due to 

variation of ICP. 
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CHAPTER 2: METHODS 

2.1 Building the Sensor Assembly 

The tympanic membrane pulsation sensor setup has two components: 1. Piezo sensor 2. Ear lobe 

pulse sensor. A Buzzer Element Piezo of resonant frequency 0.6 kHz and 44 mm diameter piezo 

disc (CUI inc, Tualatin, OR 97062, USA) was used to build the piezo sensor. The piezo disc was 

inside a 3-d printed circular chamber. There is a 3.5 mm opening at the center of the top surface 

of the chamber. A 38-mm long tube (inner diameter 3.5 mm) is attached at the opening of the 

chamber. The tube is tapered to allow easy insertion and removal of ear plug. A pressure tap was 

installed at the base of the tube to allow testing the seal (i.e. air tightness) of the connection between 

the tympanic membrane and piezo disc. Figure 2-1shows (a) the photo of piezo element and (b) 

the constructed sensor. 

 

Figure 2-1(a) 0.6 kHz 44 mm piezo disc (b) Piezo sensor along with a side pressure tap and a long tube to 

be put in external ear canal. 
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The ear lobe optical pulse sensor (Sparkfun Electronics, Niwot, CO) was attached to a small 3-d 

printed chamber to cover the electronics of the pulse sensor. An ear clip was attached to back of 

the pulse sensor to attach the sensor to the ear lobe. Both piezo and pulse sensor were placed inside 

the right and left ear muffs (Fnova, 34 dB, Shenzhen, Guangdong, China). The seal testing port at 

the base of the long tube was connected to flexible tube, which was connected to a valve that would 

allow releasing the pressure in the connection between TM and piezo disc to atmosphere. Figure 

2-2 shows (a) the ear lobe pulse sensor along with (b) the TMp sensor assembly. 

 

Figure 2-2 (a) Ear lobe pulse sensor (b) TMp sensor assembly. The piezo sensors and the ear lobe sensors 

are inside the right and left ear muffs. The while valves are used to test air tightness between ear canal and 

piezo disc by connecting the valve outlet to a manometer 

2.2 Data acquisition, Post Processing and Analyzing the Acquired TMp Data 

2.2.1 Data Acquisition, Plotting the Acquired Tympanic Membrane Waveform with Earlobe 

Pulse and Airflow   

The piezo sensor, the ear lobe pulse sensor, and the spirometer outputs were connected to a data 

acquisition system (IX-RA 834, IWORX, Dover, NH, USA) which allowed real time data 
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monitoring while acquiring the data.  Acquired data were saved in CSV files for later analysis. 

During post processing, acquired tympanic membrane data along with earlobe pulsation and 

airflow data are read and plotted (Matlab 2013, Mathworks, Natick, MA). Figure 2-3 shows the 

TMp waveform (top row), earlobe pulse (middle row) and airflow rate (bottom row).  It can be 

seen in the figure that the TMp waveform tended to vary during the respiratory cycle. 

 

Figure 2-3 Tympanic membrane pulse (top), earlobe pulse (middle) and breathing airflow (bottom). The 

tympanic membrane waveform changed with airflow. 

2.2.2 Filtering the acquired signals 

The acquired raw signals are filtered (bandpass: 1-20 Hz) to remove noise (e.g., of environmental, 

electronic, and respiratory origins). 

Figure 2-4 shows the filtered TMp, earlobe pulse and airflow signals corresponding to those shown 

in figure 2-3.  
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Figure 2-4 Filtered TMp, earlobe pulse and airflow data 

2.2.3 Identifying the Peaks of Ear lobe pulse 

Next step in analyzing the data is to find the peak locations of earlobe pulse peaks. The ear lobe 

pulses are relatively repeatable under same condition. Hence ear lobe pulse peak locations are used 

as a reference to mark corresponding TMp waveforms. These peaks were identified using methods 

similar to previous studies [22], [23].This process involved setting a threshold amplitude above 

which peaks of all individual the ear lobe pulse signal are assumed to lie. Matlab ñfindpeaksò 

function was then used to find all the pulse peaks above mean peak height (threshold amplitude). 

Since the heart rate was typically between 50-90 beats/minute, if there were multiple peaks within 

the corresponding pulse period, only the peak with higher amplitude was chosen and other peaks 

will be defined as false peaks and was removed. Figure 2-5 shows the ear lobe pulse peaks with 

their peaks marked with red circles. 
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Figure 2-5 Ear lobe pulses with their peaks marked with red circles 

2.2.4 Finding the Nadirs (start and end points) of Individual TMp waveforms 

Following the identifications of pulse peak locations, the MATLAB  program finds the nadirs (start 

and end points) of corresponding TMp waveforms. Since period of ear lobe pulses are identical 

for each pulse, the TMp cycles are assumed to be similar. The algorithm finds the start and end 

points by going a specified location in the TMp data before and after corresponding ear lobe pulse 

peak locations. This method is similar to the above section (using the findpeaks Matlab function 

after multiplying the signal by ñ-1ò) , which is also similar to previous studies [24], [25].  
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Figure 2-6 TMp and earlobe pulse waveforms are plotted. The peak locations of earlobe pulses are marked 

with black circles. The start and end points of corresponding TMp waveforms are marked with red and 

green circles 

Figure 2-6 shows the TMp nadirs along with pulse peaks. 

2.2.5 Separating the Individual TMp Events 

Once the start and end points of individual TMp waveforms are identified, the TMp waveforms 

are stored in an array. Next, these waveforms are plotted (figure 2-7) on top of each other. This 

help looking at individual TMp waveforms and identify the noise in the stored data.  

 

 

 

 

 












































































































