You are here

Dynamic Hotspot Identification for Limited Access Facilities using Temporal Traffic Data

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Crash frequency analysis is the most critical tool to investigate traffic safety problems. Therefore, an accurate crash analysis must be conducted. Since traffic continually fluctuates over time and this effects potential of crash occurrence, shorter time periods and less aggregated traffic factors (shorter intervals than AADT) need to be used. In this dissertation, several methodologies have been conducted to elevate the accuracy of crash prediction. The performance of using less aggregated traffic data in modeling crash frequency was explored for weekdays and weekends. Four-time periods for weekdays and two time periods for weekends, with four intervals (5, 15, 30, and 60 minutes). The comparison between AADT based models and short-term period models showed that short-term period models perform better. As a shorter traffic interval than AADT considered, two difficulties began. Firstly, the number of zero observations increased. Secondly, the repetition of the same roadway characteristics arose. To reduce the number of zero observations, only segments with one or more crashes were used in the modeling process. To eliminate the effect of the repetition in the data, random effect was applied. The results recommend adopting segments with only one or more crashes, as they give a more valid prediction and less error.Zero-inflated negative binomial (ZINB) and hurdle negative binomial (HNB) models were examined in addition to the negative binomial for both weekdays and weekends. Different implementations of random effects were applied. Using the random effect either on the count part, on the zero part, or a pair of uncorrelated (or correlated) random effects for both parts of the model. Additionally, the adaptive Gaussian Quadrature, with five quadrature points, was used to increase accuracy. The results reveal that the model which considered the random effect in both parts performed better than other models, and ZINB performed better than HNB.
Title: Dynamic Hotspot Identification for Limited Access Facilities using Temporal Traffic Data.
82 views
55 downloads
Name(s): Al Amili, Samer, Author
Abdel-Aty, Mohamed, Committee Chair
Radwan, Essam, Committee Member
Eluru, Naveen, Committee Member
Lee, JaeYoung, Committee Member
Wang, Chung-Ching, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Crash frequency analysis is the most critical tool to investigate traffic safety problems. Therefore, an accurate crash analysis must be conducted. Since traffic continually fluctuates over time and this effects potential of crash occurrence, shorter time periods and less aggregated traffic factors (shorter intervals than AADT) need to be used. In this dissertation, several methodologies have been conducted to elevate the accuracy of crash prediction. The performance of using less aggregated traffic data in modeling crash frequency was explored for weekdays and weekends. Four-time periods for weekdays and two time periods for weekends, with four intervals (5, 15, 30, and 60 minutes). The comparison between AADT based models and short-term period models showed that short-term period models perform better. As a shorter traffic interval than AADT considered, two difficulties began. Firstly, the number of zero observations increased. Secondly, the repetition of the same roadway characteristics arose. To reduce the number of zero observations, only segments with one or more crashes were used in the modeling process. To eliminate the effect of the repetition in the data, random effect was applied. The results recommend adopting segments with only one or more crashes, as they give a more valid prediction and less error.Zero-inflated negative binomial (ZINB) and hurdle negative binomial (HNB) models were examined in addition to the negative binomial for both weekdays and weekends. Different implementations of random effects were applied. Using the random effect either on the count part, on the zero part, or a pair of uncorrelated (or correlated) random effects for both parts of the model. Additionally, the adaptive Gaussian Quadrature, with five quadrature points, was used to increase accuracy. The results reveal that the model which considered the random effect in both parts performed better than other models, and ZINB performed better than HNB.
Identifier: CFE0006966 (IID), ucf:51682 (fedora)
Note(s): 2018-05-01
Ph.D.
Engineering and Computer Science, Civil, Environmental and Construction Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Hotspot Identification -- Limited Access Facilities -- Traffic Safety
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006966
Restrictions on Access: public 2018-05-15
Host Institution: UCF

In Collections