You are here

Modeling of flow generated sound in a constricted duct at low Mach number

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
Modelling flow and acoustics in a constricted duct at low Mach numbers is important for investigating many physiological phenomena such as phonation, generation of arterial murmurs, and pulmonary conditions involving airway obstruction. The objective of this study is to validate computational fluid dynamics (CFD) and computational aero-acoustics (CAA) simulations in a constricted tube at low Mach numbers. Different turbulence models were employed to simulate the flow field. Models included Reynolds Average Navier-Stokes (RANS), Detached eddy simulation (DES) and Large eddy simulation (LES). The models were validated by comparing study results with laser doppler anemometry (LDA) velocity measurements. The comparison showed that experimental data agreed best with the LES model results. Although RANS Reynolds stress transport (RST) model showed good agreement with mean velocity measurements, it was unable to capture velocity fluctuations. RANS shear stress transport (SST) k-? model and DES models were unable to predict the location of high fluctuating flow region accurately.CAA simulation was performed in parallel with LES using Acoustic Perturbation Equation (APE) based hybrid CAA method. CAA simulation results agreed well with measured wall sound pressure spectra. The APE acoustic sources were found in jet core breakdown region downstream of the constriction, which was also characterized by high flow fluctuations. Proper Orthogonal Decomposition (POD) is used to study the coherent flow structures at the different frequencies corresponding to the peaks of the measured sound pressure spectra. The study results will help enhance our understanding of sound generation mechanisms in constricted tubes including biomedical applications.
Title: Modeling of flow generated sound in a constricted duct at low Mach number.
39 views
14 downloads
Name(s): Thibbotuwawa Gamage, Peshala, Author
Mansy, Hansen, Committee Chair
Kassab, Alain, Committee Member
Bhattacharya, Samik, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Modelling flow and acoustics in a constricted duct at low Mach numbers is important for investigating many physiological phenomena such as phonation, generation of arterial murmurs, and pulmonary conditions involving airway obstruction. The objective of this study is to validate computational fluid dynamics (CFD) and computational aero-acoustics (CAA) simulations in a constricted tube at low Mach numbers. Different turbulence models were employed to simulate the flow field. Models included Reynolds Average Navier-Stokes (RANS), Detached eddy simulation (DES) and Large eddy simulation (LES). The models were validated by comparing study results with laser doppler anemometry (LDA) velocity measurements. The comparison showed that experimental data agreed best with the LES model results. Although RANS Reynolds stress transport (RST) model showed good agreement with mean velocity measurements, it was unable to capture velocity fluctuations. RANS shear stress transport (SST) k-? model and DES models were unable to predict the location of high fluctuating flow region accurately.CAA simulation was performed in parallel with LES using Acoustic Perturbation Equation (APE) based hybrid CAA method. CAA simulation results agreed well with measured wall sound pressure spectra. The APE acoustic sources were found in jet core breakdown region downstream of the constriction, which was also characterized by high flow fluctuations. Proper Orthogonal Decomposition (POD) is used to study the coherent flow structures at the different frequencies corresponding to the peaks of the measured sound pressure spectra. The study results will help enhance our understanding of sound generation mechanisms in constricted tubes including biomedical applications.
Identifier: CFE0006920 (IID), ucf:51696 (fedora)
Note(s): 2017-12-01
M.S.A.E.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): CFD -- Computational Aero-acoustics simulation -- Lung airway
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006920
Restrictions on Access: public 2017-12-15
Host Institution: UCF

In Collections