You are here

Growth and doping of MoS2 thin films for electronic and optoelectronic applications

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
MoS2 high absorption coefficient, high mobility, mechanical flexibility, and chemical inertness is very promising for many electronic and optoelectronic applications. The growth of high-quality MoS2 by a scalable and doping compatible method is still lacking. Therefore, the suitable dopants for MoS2 are not fully explored yet. This dissertation consists mainly of four main studies. The first study is on the growth of MoS2 thin films by atmospheric pressure chemical vapor deposition. Scanning electron microscope images revealed the growth of microdomes of MoS2 on top of a smooth MoS2 film. These microdomes are very promising as a broadband omnidirectional light trap for light harvesting applications. The second study is on the growth of MoS2 thin films by low pressure chemical vapor deposition (LPCVD). Control of sulfur vapor flow is essential for the growth of a pure phase of MoS2. Turning off sulfur vapor flow during the cooling cycle at 700 (&)#186;C leads to the growth of highly textured MoS2 with a Hall mobility of 20 cm2/Vs. The third study was on the growth of Ti-doped MoS2 thin films by LPCVD. The successful doping was confirmed by Hall effect measurement and secondary ion mass spectrometry (SIMS). Different growth temperatures from 1000 to 700 ? were studied. Ti act as a donor in MoS2. The fourth study is on fluorine-doped SnO2 (FTO) which has many technological applications including solar cells and transistors. FTO was grown by an aqueous-spray-based method. The main objective was to compare the actual against the nominal concentration of fluorine using SIMS. The concentration of fluorine in the grown films is lower than the concentration of fluorine in the aqueous solution.?
Title: Growth and doping of MoS2 thin films for electronic and optoelectronic applications.
19 views
3 downloads
Name(s): Abouelkhair, Hussain, Author
Peale, Robert, Committee Chair
Kaden, William, Committee Member
Stolbov, Sergey, Committee Member
Coffey, Kevin, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: MoS2 high absorption coefficient, high mobility, mechanical flexibility, and chemical inertness is very promising for many electronic and optoelectronic applications. The growth of high-quality MoS2 by a scalable and doping compatible method is still lacking. Therefore, the suitable dopants for MoS2 are not fully explored yet. This dissertation consists mainly of four main studies. The first study is on the growth of MoS2 thin films by atmospheric pressure chemical vapor deposition. Scanning electron microscope images revealed the growth of microdomes of MoS2 on top of a smooth MoS2 film. These microdomes are very promising as a broadband omnidirectional light trap for light harvesting applications. The second study is on the growth of MoS2 thin films by low pressure chemical vapor deposition (LPCVD). Control of sulfur vapor flow is essential for the growth of a pure phase of MoS2. Turning off sulfur vapor flow during the cooling cycle at 700 (&)#186;C leads to the growth of highly textured MoS2 with a Hall mobility of 20 cm2/Vs. The third study was on the growth of Ti-doped MoS2 thin films by LPCVD. The successful doping was confirmed by Hall effect measurement and secondary ion mass spectrometry (SIMS). Different growth temperatures from 1000 to 700 ? were studied. Ti act as a donor in MoS2. The fourth study is on fluorine-doped SnO2 (FTO) which has many technological applications including solar cells and transistors. FTO was grown by an aqueous-spray-based method. The main objective was to compare the actual against the nominal concentration of fluorine using SIMS. The concentration of fluorine in the grown films is lower than the concentration of fluorine in the aqueous solution.?
Identifier: CFE0006847 (IID), ucf:51767 (fedora)
Note(s): 2017-12-01
Ph.D.
Sciences, Physics
Doctoral
This record was generated from author submitted information.
Subject(s): Molybdenum disulfide -- X-ray diffraction -- Raman Spectroscopy -- Scanning electron microscopy -- Hall effect -- Electrical properties -- Optical properties
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006847
Restrictions on Access: public 2017-12-15
Host Institution: UCF

In Collections