You are here

Weighted Low-Rank Approximation of Matrices:Some Analytical and Numerical Aspects

Download pdf | Full Screen View

Date Issued:
2016
Abstract/Description:
This dissertation addresses some analytical and numerical aspects of a problem of weighted low-rank approximation of matrices. We propose and solve two different versions of weighted low-rank approximation problems. We demonstrate, in addition, how these formulations can be efficiently used to solve some classic problems in computer vision. We also present the superior performance of our algorithms over the existing state-of-the-art unweighted and weighted low-rank approximation algorithms.Classical principal component analysis (PCA) is constrained to have equal weighting on the elements of the matrix, which might lead to a degraded design in some problems. To address this fundamental flaw in PCA, Golub, Hoffman, and Stewart proposed and solved a problem of constrained low-rank approximation of matrices: For a given matrix $A = (A_1\;A_2)$, find a low rank matrix $X = (A_1\;X_2)$ such that ${\rm rank}(X)$ is less than $r$, a prescribed bound, and $\|A-X\|$ is small.~Motivated by the above formulation, we propose a weighted low-rank approximation problem that generalizes the constrained low-rank approximation problem of Golub, Hoffman and Stewart.~We study a general framework obtained by pointwise multiplication with the weight matrix and consider the following problem:~For a given matrix $A\in\mathbb{R}^{m\times n}$ solve:\begin{eqnarray*}\label{weighted problem}\min_{\substack{X}}\|\left(A-X\right)\odot W\|_F^2~{\rm subject~to~}{\rm rank}(X)\le r,\end{eqnarray*}where $\odot$ denotes the pointwise multiplication and $\|\cdot\|_F$ is the Frobenius norm of matrices.In the first part, we study a special version of the above general weighted low-rank approximation problem.~Instead of using pointwise multiplication with the weight matrix, we use the regular matrix multiplication and replace the rank constraint by its convex surrogate, the nuclear norm, and consider the following problem:\begin{eqnarray*}\label{weighted problem 1}\hat{X} (&)=(&) \arg \min_X \{\frac{1}{2}\|(A-X)W\|_F^2 +\tau\|X\|_\ast\},\end{eqnarray*}where $\|\cdot\|_*$ denotes the nuclear norm of $X$.~Considering its resemblance with the classic singular value thresholding problem we call it the weighted singular value thresholding~(WSVT)~problem.~As expected,~the WSVT problem has no closed form analytical solution in general,~and a numerical procedure is needed to solve it.~We introduce auxiliary variables and apply simple and fast alternating direction method to solve WSVT numerically.~Moreover, we present a convergence analysis of the algorithm and propose a mechanism for estimating the weight from the data.~We demonstrate the performance of WSVT on two computer vision applications:~background estimation from video sequences~and facial shadow removal.~In both cases,~WSVT shows superior performance to all other models traditionally used. In the second part, we study the general framework of the proposed problem.~For the special case of weight, we study the limiting behavior of the solution to our problem,~both analytically and numerically.~In the limiting case of weights,~as $(W_1)_{ij}\to\infty, W_2=\mathbbm{1}$, a matrix of 1,~we show the solutions to our weighted problem converge, and the limit is the solution to the constrained low-rank approximation problem of Golub et. al. Additionally, by asymptotic analysis of the solution to our problem,~we propose a rate of convergence.~By doing this, we make explicit connections between a vast genre of weighted and unweighted low-rank approximation problems.~In addition to these, we devise a novel and efficient numerical algorithm based on the alternating direction method for the special case of weight and present a detailed convergence analysis.~Our approach improves substantially over the existing weighted low-rank approximation algorithms proposed in the literature.~Finally, we explore the use of our algorithm to real-world problems in a variety of domains, such as computer vision and machine learning. Finally, for a special family of weights, we demonstrate an interesting property of the solution to the general weighted low-rank approximation problem. Additionally, we devise two accelerated algorithms by using this property and present their effectiveness compared to the algorithm proposed in Chapter 4.
Title: Weighted Low-Rank Approximation of Matrices:Some Analytical and Numerical Aspects.
14 views
6 downloads
Name(s): Dutta, Aritra, Author
Li, Xin, Committee Chair
Sun, Qiyu, Committee CoChair
Mohapatra, Ram, Committee Member
Nashed, M, Committee Member
Shah, Mubarak, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2016
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation addresses some analytical and numerical aspects of a problem of weighted low-rank approximation of matrices. We propose and solve two different versions of weighted low-rank approximation problems. We demonstrate, in addition, how these formulations can be efficiently used to solve some classic problems in computer vision. We also present the superior performance of our algorithms over the existing state-of-the-art unweighted and weighted low-rank approximation algorithms.Classical principal component analysis (PCA) is constrained to have equal weighting on the elements of the matrix, which might lead to a degraded design in some problems. To address this fundamental flaw in PCA, Golub, Hoffman, and Stewart proposed and solved a problem of constrained low-rank approximation of matrices: For a given matrix $A = (A_1\;A_2)$, find a low rank matrix $X = (A_1\;X_2)$ such that ${\rm rank}(X)$ is less than $r$, a prescribed bound, and $\|A-X\|$ is small.~Motivated by the above formulation, we propose a weighted low-rank approximation problem that generalizes the constrained low-rank approximation problem of Golub, Hoffman and Stewart.~We study a general framework obtained by pointwise multiplication with the weight matrix and consider the following problem:~For a given matrix $A\in\mathbb{R}^{m\times n}$ solve:\begin{eqnarray*}\label{weighted problem}\min_{\substack{X}}\|\left(A-X\right)\odot W\|_F^2~{\rm subject~to~}{\rm rank}(X)\le r,\end{eqnarray*}where $\odot$ denotes the pointwise multiplication and $\|\cdot\|_F$ is the Frobenius norm of matrices.In the first part, we study a special version of the above general weighted low-rank approximation problem.~Instead of using pointwise multiplication with the weight matrix, we use the regular matrix multiplication and replace the rank constraint by its convex surrogate, the nuclear norm, and consider the following problem:\begin{eqnarray*}\label{weighted problem 1}\hat{X} (&)=(&) \arg \min_X \{\frac{1}{2}\|(A-X)W\|_F^2 +\tau\|X\|_\ast\},\end{eqnarray*}where $\|\cdot\|_*$ denotes the nuclear norm of $X$.~Considering its resemblance with the classic singular value thresholding problem we call it the weighted singular value thresholding~(WSVT)~problem.~As expected,~the WSVT problem has no closed form analytical solution in general,~and a numerical procedure is needed to solve it.~We introduce auxiliary variables and apply simple and fast alternating direction method to solve WSVT numerically.~Moreover, we present a convergence analysis of the algorithm and propose a mechanism for estimating the weight from the data.~We demonstrate the performance of WSVT on two computer vision applications:~background estimation from video sequences~and facial shadow removal.~In both cases,~WSVT shows superior performance to all other models traditionally used. In the second part, we study the general framework of the proposed problem.~For the special case of weight, we study the limiting behavior of the solution to our problem,~both analytically and numerically.~In the limiting case of weights,~as $(W_1)_{ij}\to\infty, W_2=\mathbbm{1}$, a matrix of 1,~we show the solutions to our weighted problem converge, and the limit is the solution to the constrained low-rank approximation problem of Golub et. al. Additionally, by asymptotic analysis of the solution to our problem,~we propose a rate of convergence.~By doing this, we make explicit connections between a vast genre of weighted and unweighted low-rank approximation problems.~In addition to these, we devise a novel and efficient numerical algorithm based on the alternating direction method for the special case of weight and present a detailed convergence analysis.~Our approach improves substantially over the existing weighted low-rank approximation algorithms proposed in the literature.~Finally, we explore the use of our algorithm to real-world problems in a variety of domains, such as computer vision and machine learning. Finally, for a special family of weights, we demonstrate an interesting property of the solution to the general weighted low-rank approximation problem. Additionally, we devise two accelerated algorithms by using this property and present their effectiveness compared to the algorithm proposed in Chapter 4.
Identifier: CFE0006833 (IID), ucf:51789 (fedora)
Note(s): 2016-12-01
Ph.D.
Sciences, Mathematics
Doctoral
This record was generated from author submitted information.
Subject(s): Weighted Low-Rank Approximations -- Singular Value Decomposition -- QR Decomposition -- Singular Value Thresholding -- Robust Principal Component Analysis -- Alternating Direction Method -- Background Estimation -- Weighted Singular Value Thresholding
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006833
Restrictions on Access: public 2017-06-15
Host Institution: UCF

In Collections