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ABSTRACT 
 
 

Registered nurses (RNs) are essential to providing care in the healthcare system. To date, 

research on the relationship between healthcare provider supply and population health has 

focused on physician supply. This study explored the effect of RN supply on population health 

outcomes in the U.S.   

This is a retrospective, cross-sectional study of U.S. counties and county equivalents 

using national data. Seven population health outcomes (total and disease specific mortalities and 

low infant birth weight rate) were the response variables.  The predictor variable, RN supply, and 

some control variables were anticipated to have an asynchronous effect on the seven outcome 

variables in the hypothesized relationship. Therefore, these variables were examined using three 

different models: contemporaneous; a three-year lagged; and a distributed lag (both 

contemporaneous and lagged variables).  Quadratic terms for RN and physician supply variables 

were included. Because the Area Health Resource File (AHRF) outcome variables were skewed 

toward zero and left censored, Tobit regression analyses were used.  

Data were obtained from 19 states using historical RN Supply data for 1,472 counties, 

representing 47% of the total target population of 3,108 U.S. counties and county equivalents.  

Regions with rural populations—the Midwest and Southeast—were overrepresented.  

  
Higher RN supply is positively related to higher mortality rates from ischemic heart 

disease, other cardiovascular disease, and chronic lower respiratory disease in the distributed lag 

models. Higher RN supply is not significantly related to rates of low infant birth weight, infant 

mortality, or mortality from cerebrovascular disease in any model. Higher RN supply is 

positively related to total deaths in the contemporaneous and lagged model.  
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  The results suggest a counter-intuitive, but non-linear relationship between RN supply 

and health outcomes. More research is needed to understand these relationships and policies 

must be devised to reduce the current and growing future RN shortage. 

 

Key Words: healthcare workforce, clinician to population ratio, RN supply, mortality, health 

outcomes, Tobit regression, distributed lag model, left censored data 
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CHAPTER ONE: INTRODUCTION 

Registered nurses (RNs) hold 13% of healthcare jobs and are the largest category of 

healthcare professionals. As of October 2015, more than three million RNs were practicing 

nursing in the United States (The Henry J. Kaiser Family Foundation, 2016 ; U.S. Bureau of 

Labor Statistics, 2015). RNs practice in settings ranging from schools and work sites, to clinics, 

hospitals, nursing homes, and in the community (American Association of Colleges of Nursing 

AACN, 2014). RNs are on the frontline of healthcare delivery and are often the first point of 

contact to treat, educate, and supervise follow-up care for patients (Institute of Medicine (U.S.) 

Committee on the Robert Wood Johnson Foundation Initiative on the Future of Nursing, 2011). 

Proximity to the point of care means these professionals significantly affect population health 

outcomes by improving quality, reducing cost, and adding value as prescribed in the Institute for 

Health Improvement’s Triple Aim1 (Berwick, Nolan, & Whittington, 2008).  However, 

predictions suggest there will not be an adequate supply of nurses to meet these needs (Center to 

Champion Nursing in America (CCNA), 2014; The Henry J. Kaiser Family Foundation, 2016, 

Auerbach, Buerhaus, & Staiger, 2015, 2017) 

 The nursing profession has an aging workforce, with decreasing job satisfaction and 

burnout causing RNs to leave direct patient care (Bodenheimer & Sinsky, 2014; Institute of 

Medicine (U.S.). Committee on the Robert Wood Johnson Foundation Initiative on the Future of 

Nursing, 2011; McHugh, Kutney-Lee, Cimiotti, Sloane, & Aiken, 2011; Naylor & Kurtzman, 

2010; Seago, Spetz, Ash, Herrera, & Keane, 2011; Unruh, 2005; Unruh & Zhang, 2013). Many 

                                                 
1 Triple Aim embodies a new direction for healthcare that seeks to improve population health, 
improve patient experience and satisfaction, and reduce healthcare costs.  
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RNs have opted for reassignment—sometimes permanently—from clinical care to quality 

improvement, risk and patient safety, and administration (McHugh et al., 2011). 

 Increasing use of technology, professional domain revision, scope of practice expansion, 

and the debate over the role of advanced practice registered nurses (RNs with a master’s or 

doctor of nursing practice degree who can diagnose and treat both simple and complex medical 

conditions [APRNs]) complicate determining the extent of the pending shortage of RNs. Another 

issue is the capacity of education programs to train new RNs at a rate adequate to meet expected 

demand (Institute of Medicine (U.S.). Committee on the Robert Wood Johnson Foundation 

Initiative on the Future of Nursing, 2011; Rosseter, 2014).  

These nursing workforce issues are similar to shortages in the physician workforce. 

Attention to the supply of clinicians and their importance to improving population health 

outcomes have focused on physician shortages, physician specialty and geographic 

maldistribution, and the need for additional residency slots to train doctors. (Chang et al., 2011; 

Dussault & Franceschini, 2006; Shi et al., 2005.; Starfield, Shi, Grover, & Macinko, 2005; Zurn, 

Dal Poz, Stilwell, & Adams, 2004).  Nonetheless, RNs are involved in every aspect of care and 

are often the first point of contact.  

Logic suggests RNs contribute significantly to population health, but there has been little 

research to support this belief. A body of literature is emerging that compares primary care 

outcomes for physicians with care outcomes for APRNs  that supports expanding their scope of 

practice and removing physician supervision requirements (Bauer, 2010; Brooten, Youngblut, 

Kutcher, & Bobo, 2004; Dierick-Van Daele et al., 2010; Kleiner, Marier, Park, & Wing, 2014; 

Kuo, Loresto, Rounds, & Goodwin, 2013; Newhouse et al., 2011; Xue, Ye, Brewer, & Spetz, 

2015). Other research has focused on the impact of RNs on patient and resident outcomes in 
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hospitals and nursing homes. This results of this research strongly indicate that nursing plays a 

positive role in outcomes (Cho, Ketefian, Barkauskas, & Smith, 2015; Konetzka, Stearns, & 

Park, 2008). 

Only three national studies examine the ratios of RNs and the health outcomes of the 

populations they serve (Bigbee, 2003;Bigbee, 2008; Bigbee et al., 2014; Fields, Bigbee, & Bell, 

2015).  The results were remarkable because they showed positive associations between higher 

RN supply and population health. However, one study used state population health rankings as 

the outcome measure (Bigbee, 2008); a second study may have overstated RN supply (Bigbee et 

al., 2014); another considered RNs as only one element of a healthcare workforce study (Fields 

et al, 2015). Thus, the association between RN supply and population health outcomes is 

uncertain and there continues to be many unanswered questions. 

Since there are greater numbers of RNs than any other healthcare professional, it is 

essential to understand the relationship between RN supply and population health outcomes. This 

knowledge could be used to influence healthcare workforce policy analyses and population 

health improvement strategies. 

The Research Problem 

Prior research found that population health outcomes are improved with higher primary 

care physician to population ratios, but not with higher specialist physician to population ratios 

(Shi et al., 2004; Starfield, Shi, Grover, & Mackino, 2005; Starfield, Shi &Mackino, 2005). The 

relationship between primary care supply and population health outconess is even less clear 

when regional variation is considered (Ricketts & Holmes, 2007). Considering the impending 

shortage of primary care physicians, the potential for RNs to fill the gap—particularly in 

managing chronic disease—demands explication  (Cooper, 2015; Dall et al., 2013; AAMC, 
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2015). If there is a relationship between physician supply and health outcomes, it is conceivable 

there is also a  relationship between RN supply and population health outcomes.  

 

Definitions 

The terms used in this research are defined below:  

Registered Nurses (RNs) 

RNs “complete a program of study at a community college (associate degree), diploma 

school of nursing (diploma), or a four-year college or university (baccalaureate) degree and must 

pass a national, standardized licensing examination in the state in which they begin practice” 

(Institute of Medicine (U.S.) (IOM) Committee on the Robert Wood Johnson Foundation 

Initiative on the Future of Nursing, 2011, p. 68).  With this preparation, RNs work in settings that 

span the continuum of healthcare delivery. Typical activities include patient observation, 

assessment, education, medication administration, wellness promotion, and disease prevention. 

Many RNs are certified in subspecialty areas of nursing including pediatrics, critical care, 

obstetrics, and surgery. This definition excludes licensed practical nurses (LPNs), licensed 

vocational nurses (LVNs), and certified nursing assistants (CNAs). 

 

Advanced Practice Registered Nurse (APRN) 

 Some RNs continue their education beyond the baccalaureate degree in nursing (BSN) to 

obtain graduate degrees in nursing – Master of Science in nursing (MSN) and Doctor of Nursing 

Practice (DNP). There are four types of APRNs. Nurse practitioners (NPs) provide a broad range 
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of services in various settings. These RNs are trained to diagnose and treat common health 

problems, order and interpret common diagnostic tests, write prescriptions, and make referrals 

(IOM, 2011). They provide services similar to primary care physicians. However, their legal 

scope of practice varies by state. Certified registered nurse anesthetists (CRNAs) are trained to 

provide anesthesia and related care to patients at different levels of acuity. Clinical nurse 

specialists (CNS) provide care across the continuum and are responsible for diagnosis, 

management, and treatment of disease, health promotion, and health education. Certified nurse-

midwives (CNMs) can provide primary, gynecologic and obstetric care to women, as well as 

newborn care. They can also provide reproductive care to the male partners and treatment for 

sexually transmitted diseases (Bauer, 2010; Center to Champion Nursing in America (CCNA), 

2014.) 

 

RN Supply 

RN supply is based on a model from Health Resources and Services Administration 

(HRSA), which is part of the U.S. Department of Health and Human Services. The model 

estimates the number of available full-time equivalent licensed RNs by age, education, practice 

setting, and employment participation and adjusts for expected separations from the workforce 

and new graduates (Bureau of Health Resources and Service Administration, 2004). RN supply 

can also measure the characteristics of health providers (such as gender, age, race, full/part time 

work, educational preparation etc.) in a defined area (Lewin Group, 2010). 

RN supply in this study includes licensed registered nurses (both part and full time). 

Location of nurses within the professional registry data is listed as residential address. In this 



6 
 

study, RN to population ratios (per 100,000) are used as the standard of comparison for 

variations in population distribution (Fields et al., 2015). 

 

Primary Care Physician 

Primary care physicians include general family medicine, general practice, internal 

medicine, and pediatrics. Thus, the definition of a primary care physician as distinct from a 

specialist physician is not completely explained by education, training, and certification, since 

primary care physicians may have a specialty or sub-specialty (such as pediatrics and 

obstetrics/gynecology) and board certification (Association of American Medical Colleges 

(AAMC), 2015; 3; Chang, Stukel, Flood, & Goodman, 2015; Chang et al., 2011).  The 

distinction has more to do with their role in healthcare delivery. According to the American 

Academy of Family Physicians (AAFP), a primary care physician “provides definitive care to the 

undifferentiated patient at the point of first contact, and takes continuing responsibility for 

providing the patient's comprehensive care. This care may include chronic, preventive, and acute 

care in both inpatient and outpatient settings. Such a physician must be specifically trained to 

provide comprehensive primary care services through residency or fellowship training in acute 

and chronic care settings”. This study uses the AHRF definition of PCP as operationalized in 

previous studies (Starfield, Shi, Grover, et al., 2005; Starfield, Shi, & Macinko, 2005): “doctors 

in office-based practice in family medicine or general practice, general internal medicine, and 

general pediatrics”. All other physicians are defined as specialists. 
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Population Health Outcomes 

This term describes collective health consequences within the population group of 

interest. This health status  results from individual exposure to numerous factors (health 

determinants such as access to medical care, socioeconomic status, and lifestyle, as well as 

genetic predisposition) as well as policies and other interventions at the group level (Kindig & 

Stoddart, 2003; Parrish, 2010). Examples of population health outcomes include mortality, 

morbidity, quality of life, and health status. For the purpose of this research, low infant birth 

weight, disease-specific and age-adjusted mortality rates were selected as population health 

outcome measures (Parrish, 2010). These are detailed in Chapter 2. 

 

Significance of the Research, Research Questions, and Hypotheses 

The study of the impact of clinician supply on population access and health outcomes has 

generated a significant body of literature about the role of doctors (Dussault & Franceschini, 

2006; Laditka, 2004; Macinko et al., 2007;  Shi et al., 2004; Starfield, Shi, Grover, et al., 2005; 

Starfield, Shi, & Macinko, 2005). However, little is known about RNs and their role in 

population health outcomes  (Bigbee, 2008; Bigbee et al., 2014; Fields et al., 2015). This is 

curious given RN participation in every aspect of healthcare delivery, and in settings as diverse 

as community health and primary care services and acute and long-term care (Institute of 

Medicine [U.S.]. Committee on the Robert Wood Johnson Foundation Initiative on the Future of 

Nursing, 2011; Rice & Unruh, 2015). To date, RN studies of the link to population health have 

used self-assessed health status, county health ranking, and gender-specific interventions as 
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outcome measures. Only two RN supply studies used regression analysis with disease specific or 

total mortality rates as outcome measures, as has been done in physician supply research.  

 The purpose of this research is to identify the effect of RN supply on population health 

outcomes in the U.S., by examining the association with various types of mortality and low 

infant birth weight. It will build on prior research examining relationships between nurse staffing 

and patient outcomes at facility levels. It will add to evidence regarding the effects of RN supply 

on the micro level (e.g., hospital/health facility level), and inform the field about RN supply on 

the macro level (e.g., population health, and healthcare delivery). The results will help inform 

policies to help ensure RN workforce adequacy and its effective use as suggested in the IOM 

report, The Future of Nursing (2010).  

Demonstrating the relationship between RN supply and population health outcomes will 

provide essential information to encourage measures to improve RN recruitment and retention. It 

will also suggest a reconsideration of the scope of practice restrictions that require qualified 

nonphysicians to be directly or indirectly supervised by a physician. Reducing these restrictions 

will increase the number of clinicians who can affect healthcare outcomes and improve 

population health as prescribed in the Triple Aim (see page 1).   

Population health outcomes are numerous, complex and interrelated. Thus, no one 

measure of population health can accurately reflect the health of the counties being studied. This 

research selects seven measures of health outcomes. The measures have been selected to be 

largely gender neutral. The measures include total and disease-specific mortality rates, infant 

mortality and low infant birth weight; thus, compensating for the limitations of previous studies.   

This study will add to the knowledge base by answering the research question: 

What is the relationship between RN supply and population health outcomes?   



9 
 

The research question will be answered by testing seven hypotheses: 

H1: Higher county-level RN to population ratios are related to lower rates of low birth 

weight infants. 

H2: Higher county-level RN to population ratios are related to lower infant mortality 

rates. 

H3: Higher county-level RN to population ratios are related to lower total mortality rates. 

H4: Higher county-level RN to population ratios are related to lower rates of mortality 

due to cerebrovascular disease. 

H5: Higher county-level RN to population ratios are related to lower rates of mortality 

due to ischemic heart disease. 

H6: Higher county-level RN to population ratios are related to lower rates of mortality 

due to cardiovascular disease. 

H7: Higher county-level RN to population ratios are related to lower rates of mortality 

due to chronic lower respiratory disease. 

 

Description of Study 

This exploratory study is a cross-sectional analysis of secondary national data at the 

county level and will include lagged dependent variables. Data on population health outcomes 

will be obtained from the Area Health Resources File (AHRF) for the 3108 counties and county 

equivalents in 48 contiguous states and the District of Columbia for 2010 through 2014. The data 

from the AHRF will be matched by the five-digit Federal Information Processing Standard 

(FIPS) code to data on RN supply from the State Boards of Nursing (NCSBN) for the years 2010 

and 2013. 
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Chapter Summary 

This chapter identifies the significance of RNs in healthcare delivery and access to 

healthcare, and briefly describes how some factors including RN supply may affect population 

health outcomes. The chapter describes the significant contribution this research will make to the 

knowledge about healthcare workforce issues and the link to population health, as measured by 

several population health outcomes. Finally, the chapter proposes research questions and 

hypotheses to study the relationship between RN supply and population health outcomes.  
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CHAPTER TWO: THEORETICAL FRAMEWORK AND LITERATURE REVIEW  

This chapter discusses the theoretical framework and literature pertaining to the 

relationship between RN supply and population health outcomes. The theoretical framework 

discusses definitions of population health and theories explicating the relationship among the 

variables used in the research model. 

The literature review analyzes previous research linking clinician-to-population ratios, 

including RN supply, to health outcomes. It includes research on the supply of general practice 

(PCP) and specialist physicians and population health for two reasons. First, the link between 

physician supply and population health has been explored and provides important insight on the 

research to be undertaken. Second, PCP supply is an essential independent variable in the 

research design detailed in Chapter Three. Since factors other than workforce supply influence 

population health, the literature review includes previous research exploring those factors.   

Theoretical Framework 

With few exceptions, studies of clinician supply and population health outcomes have 

been atheoretical. Standard economic location theory (SELT) was referenced by researchers in 

some studies examining physician location choice and the relationship to health outcomes 

(Beckmann, 1971; Dussault & Franceschini, 2006; Newhouse, Williams, Bennett, & William, 

1982). However, unlike other aspects of physician supply research that provide a conceptual 

basis for this study, this theory is inadequate to predict the relationship between RN supply and 

population health outcomes. SELT neither explains the relationship among the determinants of 

population health outcomes nor does it explain the relationships that occur among individual and 

community level determinants or between the individual and community level determinants. 
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Many theories inform the framework for this study. The following section discusses 

definitions and measures of population health and present frameworks that identify factors 

contributing to population health.  Donabedian framework links workforce supply to population 

health. 

Definitions of Population Health and Population Health Outcome Measures 

To develop a framework for population health to guide this research, an exploration of 

population health definitions and measures of population health outcomes is warranted. The 

following section reviews the definitions in the literature and suggests possible measures of 

population health outcomes as informed by prior works. Ultimately, population health outcome 

measures are selected for the conceptual framework for this study. 

Population health has been defined and measured in various ways. Young (1998) 

suggested that population health is a model for considering comparative health outcomes among 

groups of people including the policies, studies, and resources devoted to these outcomes. In 

1999, Dunn and Hayes extended the following definition for population health, including 

measuring health, as well as its determinants:  

“Population health refers to the health of a population as measured by health status 
indicators and as influenced by social, economic, and physical environments, personal 
health practices, individual capacity and coping skills, human biology, early childhood 
development, and health services. As an approach, population health focuses on 
interrelated conditions and factors that influence the health of populations over the life 
course, identifies systematic variations in their patterns of occurrence, and applies the 
resulting knowledge to develop and implement policies and actions to improve the health 
and well-being of those populations.” (Dunn & Hayes, 1999 (p57).)  
 

Kindig and Stoddart (2003) define population health as “the health outcomes of a group 

of individuals, including the distribution of such outcomes within the group” (p.381). Kindig and 

Stoddart (2003) use health outcomes instead of health status in their definition of population 
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health, but do not identify health outcome measures. They assert that “health outcomes” captures 

more than the snapshot implied by “health status.” They add that health outcomes should be 

construed as longitudinal, and suggest that health researchers should select measures appropriate 

to their research. They did not, however, suggest a single summative measure. Last (2001) 

defines health outcomes as 1) any result stemming from exposure to the cause or from 

interventions or preventive measures, or 2) all the identifiable changes in the health condition 

consequential to an intervention. The guidance from this definition is broad; population health 

outcome measures may include mortality or longevity and life expectancy, morbidity, quality of 

life, disability and self-reported health status. 

To measure population health outcomes, both quality and length of life could be 

represented in equal proportion. However, health-related quality of life encompasses subjective 

concepts such as beauty, spirituality, culture, choice of environment. It could also be considered 

as the collective impact of life choices on well-being (Gold, Stevenson, and Fryback, 2002 as 

cited in (Remington & Booske, 2011)). The Centers for Disease Control and Prevention (CDC) 

defines health-related quality of life as “an individual’s or group’s perceived physical and mental 

health over time.” Thus, as a construct perceived health-related quality of life or morbidity could 

prove difficult to measure since it is largely self-perception. On the other hand, objective 

indicators of morbidity, mortality, or the length of life may be more reliable measures of 

population health but less inclusive.  

The challenge of measuring population health outcomes is illustrated by the Population 

Health Institute (PHI). They recommend five measures of outcomes: more measures for health-

related quality of life than for length of life. Each of the five has equal weight:  
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1. Mortality determined from premature deaths, which is measured as years of 

potential life lost before age 75.  

2. Morbidity as self-reported health status of fair or poor health.  

3. Morbidity as the average number of days reported as physically unwell during the 

past month. 

4. Morbidity as the average number of days reported as mentally unwell during the 

past month. 

5. Morbidity as low birthweight infants which captures health at birth. (Remington 

& Booske, 2011) 

Self-reported health status is also used as a metric of population health. The PHI requires 

three instances of self-assessments for fair or poor health, feeling physically unwell, or feeling 

mentally unwell. Although information about this “point in time” assessment of health could be 

derived from population health surveys such as the Behavioral Risk Factor Surveillance System 

(BRFSS), those assessments could be unreliable. Inter-region and inter-population comparisons 

become problematic because the interpretation of questions and responses is highly variable. 

Also, survey responses are amenable to bias as participants may overrate or underrepresent 

responses to cast themselves in favorable light – reporting bias. Therefore, self-reported health 

outcomes have not been selected as dependent variables for this study. 

Mortality is a measure of deaths in a defined population over time. The raw calculation of 

deaths is the crude mortality rate. However, the crude death rate does not allow accurate 

comparison among groups. Age distributions vary in populations, and older populations will 

have more deaths. Thus, adjusting for age distribution – age-adjusted mortality rates – 

standardizes mortality rates and allows accurate comparisons (Miller & Stokes, 1978).  Other 
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calculations of mortality include disease-specific mortality rates, calculated for all deaths from 

the same cause. This metric shows how specific types of morbidity affect total mortality.  

While mortality captures end of life, other population health outcomes capture health 

outcomes at birth – infant mortality and low infant birth weight. Infant mortality is a robust 

representation of overall population health (Reidpath & Allotey, 2003). It is calculated from the 

mortality of children less than age one. This measure is linked to other population health 

outcomes, such as life expectancy. It is also an indicator of the adequacy of clinical care (Chen & 

Lowenstein, 1985; Shi et al., 2004).  Low infant birth weight is measured as infants born 

weighing 2500 grams, or less. As a population health outcome, low infant birth weight serves as 

an indicator of maternal health and health behaviors, health access, socio-economic status, 

environment, as well as a prediction for the infant’s health outcomes. Thus, a variety of 

associations can be drawn from low infant birth weight (Shi et al., 2004). 

Previous research has followed the advice offered by Kindig and Stoddart and used 

several measures of health outcomes:  total and disease-specific mortality rates, self-assessed 

health status, low infant birth weight, and early breast, cervical, colorectal, and skin cancer 

detection (Gulliford, 2002; Starfield, Shi, Grover, et al., 2005; Starfield, Shi, & Macinko, 2005). 

Mortality rates are usually age-adjusted and listed as the rate of deaths per 1,000 population 

(Starfield, Shi, & Macinko, 2005). This study will follow that precedent and use the following 

population health outcome measures as guided by the literature: age-adjusted mortality rates, 

specific mortality rates for cerebrovascular disease, ischemic and other cardiovascular disease, 

chronic lower respiratory disease, diabetes, low infant birth weight, and infant mortality. These 

outcomes, as substantiated in the preceding discussion, are listed in Table 1.   
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Table 1 Specific Population Health Outcome Measures 

Outcome Variables Measurement Reference 
Total age-adjusted mortality  Rates of total mortality in the 

county adjusted by age 
 

Shi et al., 2005 

Mortality -cerebrovascular 
disease 

Rates of mortality due to 
cerebrovascular disease in the 
county, 3-year average 
 

Macinko, Starfield & 
Shi, 2007 

Mortality - ischemic heart 
disease 

Rates of mortality due to 
ischemic heart disease in the 
county, 3-year average 
 

Shi et al., 2005: 

Mortality - other cardio-
vascular disease 

Rates of mortality due to other 
cardio-vascular disease in the 
county, 3-year average 
 

Shi et al., 2005: 

Mortality - chronic lower 
respiratory disease 

Rates of mortality due to 
chronic lower resp. disease in 
the county, 3-year average 
 

Proxy for air quality 
and health behaviors 
such as smoking 

Low infant birth weight Rates of birth < 2500 grams, 3-
year average 
 

Shi, Macinko, Xu, 
Regan, Politzer & 
Wulu, 2004 
 

Infant mortality  Rates of mortality under one 
year of age in county, 5-year 
average 
 

Shi, Macinko, Xu, 
Regan, Politzer & 
Wulu, 2004 

 

Kindig and Stoddart Framework for Determinants of Population Health  

The definition of population health by Kindig and Stoddart (2003) above is an early 

indication in the literature that population health is multidimensional and is influenced by many 

broad categories of health determinants –  factors that affect health (Last, 2001, Kindig, 2007). 

An association between a health determinant and a health condition is shown when the presence 

or absence of the determinant or a change in the level of the determinants affects the degree of 
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the health condition. This relationship between certain factors and population health forms the 

basis of a broad framework for the determinants of population health (Kindig et al., 2008). 

Kindig and Stoddart considered the research on the determinants of population health an 

equation. The left side of the equation – health determinants, the right side of the equation – 

health outcomes; or both sides of the equation – the total effect of various health determinants on 

health outcomes, and concluded that the whole equation is the most appropriate for population 

health research.  

According to Kindig 2007, the categories of health determinants are physical and 

environmental, healthcare access, social or socio-economic, genetic, behavioral or lifestyle, and 

biological. Confounding the causal relationship between a specific determinant and health 

condition is that various broad categories of determinants themselves have important 

associations and intervening relationships between and among them ( Kindig, 2007; Kindig et 

al., 2008).  

The environment includes external factors that ultimately affect health outcomes:  

healthcare system, physical setting, and community. The healthcare system includes the state and 

federal policies and the configuration of services that affect healthcare utilization. Included in the 

system are availability and distribution of the healthcare workforce (including physician and 

nurse supply). The physical setting includes elements that could affect the health status of 

individuals where they live and work: societal norms, neighborhood walkability, economic 

conditions and poverty/wealth, stress levels, environmental quality, and violence (Kindig et al., 

2008; Phillips, Morrison, Andersen, & Aday, 1998). Kindig and Stoddart concluded that 

population health as a health outcome concept should be defined broadly. Concomitantly, they 

asserted that attention to multiple determinants of health outcomes (regardless of how measured 
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[i.e., both sides of the equation] is necessarily intrinsic to the field of population health research). 

Determinants include medical care, public health interventions, social environment (e.g., income, 

education, employment, social support, and culture), physical environment (e.g., urban design, 

and clean air and water), genetics, and individual behavior (Health, Durch, Bailey, & Stoto, 

1997).  

Population Health Institute Framework 

The Population Health Institute (PHI) at the University of Wisconsin developed a 

comprehensive framework of factors that influence population health. PHI used this framework 

to rank population health in Wisconsin counties from 2003. Now, in collaboration with the 

Robert Wood Johnson Foundation, PHI’s framework is being used to rank the population health 

of counties nationwide from 2010 to 2016 – County Health Rankings Approach. The framework 

(described from this point as the PHI Framework) includes factors affecting population health 

such as social and economic conditions, health behavior, physical environment, and access to, 

and quality of, healthcare (see Figure 1). 

The social and economic factors in this model include the domains of community safety, 

education, income, employment, and family and social support. The community safety domain 

includes neighborhood felonies (e.g. murder, manslaughter, rape, and assault) as well as 

accidental injury rates. A fear of crime may cause residents additional stress or cause them to 

limit time spent outdoors with deleterious effects to  their health (Egerter, Barclay, Grossman-

Kahn, & Braveman, 2011). The education domain illustrates the link between educational 

achievements and longevity and fewer chronic conditions (Egerter, Braveman, Sadegh-Nobari, 

Grossman-Kahn, & Dekker, 2011; Meara, Richards, & Cutler, 2008). The employment domain 

recognizes that freedom of choice  supports overall quality of life, which is linked to the 
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prevailing economic conditions as well as educational preparation  as well as income (An, 

Braveman, Dekker, Egerter, & Grossman-Kahn, 2011). Finally, the income domain includes the 

resources that support additional living decisions such as choice of residence, other basic 

physiological needs, and asset accretion. Income disparities are known to be associated with 

higher mortality risks (Lynch et al., 2004; Shi, Macinko, Starfield, Xu, & Politzer, 2003; Shi et 

al., 2003). The family and social support domain includes the concept of social capital – 

collective pooling of resources in networked relationships. Residents in areas with greater social 

capital have better networks that connect them to information and resources that facilitate 

healthier behaviors and prevent social exclusion (Carpiano, 2006; Kawachi, Kennedy, & Glass, 

1999). 

The health behavior factors in the PHI Framework include domains for excessive alcohol 

and illicit drug use or prescription drug misuse, diet and exercise, sexual activity, tobacco use, 

and sleep deprivation. Collectively, lifestyle choices in these domains can negatively influence 

population health outcomes. For example, excessive alcohol consumption is positively associated 

in motor vehicle injuries and deaths, increased risk of chronic  disease, risky sexual behavior, as 

well as a precursor to intimate partner violence (Centers for Disease Control and Prevention, 

2015). Some environmental and lifestyle choices and behaviors are linked to low birth weight. 

For example, smoking, substance abuse, or poor nutrition have been associated with low infant 

birth weight (Bailey & Byrom, 2007). Low birth weight can increase the risk of cardiovascular 

and respiratory conditions in adulthood, predicting morbidity and mortality (Irving, Belton, 

Elton, & Walker, 2000; Kotecha, Dunstan, & Kotecha, 2012; Paneth, 1995). 

The physical environment factors in the PHI framework include air and water quality, 

housing, and transit. Access to clean air and potable water are basic to maintaining good health. 
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Increased mortality risks are associated with poor air quality, particularly in  populations with 

chronic lung conditions ( Chen, Goldberg, & Villeneuve, 2008). Poor air quality in built-up 

neighborhoods  results from  highways, poor sanitation, and  areas that lack green space (Lovasi 

et al., 2012; Vlahov et al., 2007). Another part of the physical environment domain is housing 

and transit. These factors can affect health, too. Although well-built homes provide shelter from 

the elements, they can also sicken occupants with the presence of allergens such as mold, or from 

exposure to lead or radon (Braveman, Dekker, Egerter, Sadegh-Nobari, & Pollack, 2011). Transit 

describes the private vehicles or public transit systems that connect residents with home, school, 

or work and leisure activities, and also neighborhood walkability. Absence of  sidewalks and  

reliance on vehicles is associated with increased obesity and cardiovascular disease (De Snyder 

et al., 2011; Lovasi et al., 2012).  

 The last domain in the PHI framework is about quality of, and access to, medical care. 

Higher quality care is linked with fewer medical errors and the provision of evidence-based care. 

Access to care includes factors such as health insurance coverage, and out of pocket costs 

(University of Wisconsin Population Health Institute, 2016). Also included is the availability and 

proximity of clinicians including physicians and nurses — the variable of interest in this research 

— as a population to provider ratio (RN supply).   
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Figure 1 University of Wisconsin Population Health Institute. County Health Rankings & 
Roadmaps 2017.  
Used with permission 
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Eco-epidemiological Theory 

Population health outcomes emerge from the complex interplay of determinants at 

multiple levels, from the biological to the societal level of individuals aggregated within social 

networks, affected by location, and influenced differently over time. (Fink, Keyes, & Cerdá, 

2016). Ecological theories acknowledge these relationships and allow nuanced exploration of 

these interactions, and explanations of the association between social environment and health 

outcomes (Brailsford et al., 2011; Carpiano & Daley, 2006; Macdonald, Newburn-Cook, Allen, 

& Reutter, 2013). 

Eco-epidemiological theory is one of this group of theories. As developed by Susser and 

Susser (1996), the theory hypothesizes a system wherein the community, group, and individual 

levels of determinants influence each other – a nested system. According to these authors, 

“[E]cology embraces the interrelations of all living things. Epidemiology could be described as 

human ecology, or that large part of human ecology relating to states of health”(Susser, 1973) (p. 

30).  Eco-epidemiology then is “the conceptual approach combining molecular, societal, and 

population-based aspects to study a health related problem” (Bain & Awah, 2014). The theory 

has been used to explain the clustering of morbidity and mortality and facilitate analysis of 

hierarchical factors (Bain & Awah, 2014; Diez-Roux, 2000; Diez Roux, 2007; Phelan, Link, 

Diez-Roux, Kawachi, & Levin, 2004). 

In contrast, the risk factor paradigm of epidemiology describes the perspective that 

multiple determinants at the individual level can be associated with population health outcomes 

without mediating factors. Susser disagreed. His eco-epidemiological theory is built on the 

concept that population health is more than the aggregation of individual health outcomes as 

advanced by Morris 1957 in Uses of Epidemiology (March & Susser, 2006). Susser added levels 
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of organization by asserting that determinants of health for the individual could be different from 

those determinants for the population. 

These differences augment the analytical challenge with an equal risk of opposing 

fallacies: an ecological fallacy – inference about the individual from population comparisons; or 

an atomistic fallacy – inference about the population from individual comparisons (March & 

Susser, 2006; Susser, 2004; Susser & Susser, 1996a;  Susser & Susser, 1996b; Susser, 1973, 

1998).  Nonetheless, the multilevel conceptualization facilitated by eco-epidemiological theory 

addresses the risks of these fallacies for the researcher. The eco-epidemiological perspective 

provides a heightened awareness of the ecological risks and an understanding that no 

determinant is without relationships (Diez-Roux, 1998; McLaren & Hawe, 2005). The 

perspective assures that within the nested environment, a set of factors could be construed in a 

logical structure or function (Bain & Awah, 2014).  Finally, the perspective supports a broad 

framework for population health and that population level factors are used to determine 

population health outcomes.  

Donabedian Structure-Process-Outcomes Framework 

Donabedian’s seminal conceptualization of quality assessment and management, which 

he titled structure-process-outcome, is one such broad framework. The Donabedian framework 

for quality assessment is robust enough to include macro population health measures such as 

longevity, morbidity, and mortality, as well as the use and distribution of healthcare services. 

Thus, the framework and its proposed measures are applicable to this research.   

As first published in 1966, the concept of structure process outcome was intended to 

evaluate the quality of the medical care process at the individual level, i.e. patient interaction 

with a clinician. Community-level services delivery were not included ( Donabedian, 1966; 
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Donabedian, 1978). However, the conceptualization can be used to frame the variables in the 

logic model of this study. Moreover, the robustness of Donabedian’s framework allows structure 

to be used to study outcomes. The framework persists in explication despite an incomplete 

understanding of the relationship between structure and process, or process and outcome, or 

structure and outcome (Donabedian, 1978; Wyszewianski & Donabedian, 1981).  

As conceived by Donabedian and applied here, structure is the setting and organization of 

healthcare delivery, including managerial processes that support delivery of services. This 

domain includes physical facilities and the related equipment, financial and information 

resources, as well as the number, type, and qualifications of human resources. The number of 

hospital beds, insurance coverage, hospital ownership and organization structure are  also  in this 

domain (Donabedian, 1978; Duff, 1992; Macinko, Starfield, & Shi, 2003; Spetz et al., 2013; 

Zinn & Mor, 1998). In this study, RN supply and PCP supply are important elements of 

structure. 

Donabedian described process as the work of the clinicians in patient management and 

delivery of services, i.e., what is done to and for patients (Donabedian, 1978; Duff, 1992; Zinn & 

Mor, 1998). This domain includes the accessibility of care, care coordination and continuity, as 

well as communication with providers (Gustafson & Hundt, 1995). However, the framework 

assumes a sequential process from structure to outcomes and this study is concerned with the 

relationship between an essential structural component and outcomes. An assumption  made by 

the Donabedian framework is that given good structure, good clinical care follows (Donabedian, 

1978; Spetz et al., 2013; Zinn & Mor, 1998). In this sense, process is analogous to the black box 

paradigm of eco-epidemiological theory, in which a relationship is known to exist, but is not well 

understood.  
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Donabedian defined outcomes as the effect of care on individuals and populations 

(Berwick & Fox, 2016; Donabedian, 1978).  Outcomes have been categorized as the appraisal of 

the health outcomes in terms of quality and satisfaction, or technical (also clinical) and 

interpersonal, or positive and negative. Outcomes such as mortality (the dependent variables in 

this study), morbidity, and disability are considered technical outcomes. Negative outcomes are 

objective. Discomfort or dissatisfaction are interpersonal or positive outcomes and are 

subjective. (Zinn & Mor, 1998).   

 A half century after being introduced, the structure-process-outcome sequence  remains 

fundamental to quality measurement, quality improvement, and health systems research 

(Berwick & Fox, 2016). This makes the Donabedian framework is relevant to study the 

relationship between RN supply and population health outcomes.  

Integrated Framework for the Relationship between RN Supply and Population 

Health 

 The Donabedian and population health conceptual frameworks can be integrated to 

suggest the relationship between RN supply and population health outcomes. The Donabedian 

framework classifies the number, type, and qualifications of clinicians – RN supply and PCP 

supply – as part of the structure domain i.e. the setting and organization of healthcare delivery. 

Setting and organization of healthcare delivery also describes whether the location under review 

is urban or rural. RN supply and PCP supply, as well as urbanicity have been selected as three 

structural elements to predict the availability and proximity to care. These control structural 

measures, urbanicity, and the demographic and socio-economic measures, are discussed in the 

literature review and in Chapter Three.  
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 Given Donabedian’s corollary that good outcomes follow good structure and the need for 

parsimony, it is possible to omit process measures from this study. This omission is necessary 

because process measures are difficult to quantify at the population level.  

 The PHI framework, as well as the Kindig treatise on population health, include a 

category of health determinants for healthcare access such as insurance coverage and clinician 

supply. These determinants connect the ability of patients to have access to medical care with 

population health outcomes.   

Eco-epidemiological theory reinforces the conclusion that the relationship between RN 

supply and population health outcomes is embedded within ecological variables. Susser’s theory 

also serves as a reminder that the variables to be included in the framework must be at 

comparable levels. That is to say that the variables should describe the environment of the 

county, the unit of analysis. The clustering of total mortality, disease-specific mortalities, and 

low infant birth weight among counties should be explained, at least in part, by the nested 

relationship of the individual in their environment and RN supply in the healthcare facility 

concentration.  

Additionally, the influence of socio-economics, genetics, and health behaviors on health 

outcomes cannot be overlooked. Control measures have been selected that serve as proxies for 

these factors and allow fair comparisons between counties. This domain found in the PHI and 

Kindig frameworks-- demographics and socio-economics--includes population level measures 

for ethnicity, age, income, and education.  

Figure 1 depicts the relevance of the theoretical frameworks for this study. Donabedian’s 

structure, process, and outcomes framework and the PHI and Kindig frameworks link RN supply 
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to population health outcomes, while the population health frameworks suggest that health 

behaviors, socio-economics and genetics also play an important role in health outcomes. 

 

 

Figure 2 Integrated Framework for the Relationship between RN Supply and Population Health 
Outcomes.  
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Literature Review  

This section examines the previous literature regarding relationships between RN supply 

and population health, PCP supply and population health, and other factors that contribute to 

population health. There is limited research correlating RN supply and population health. 

Previous studies about RNs and RN supply focused on the RN’s role in the hospital and on 

patient-level outcomes,  adjusted for staffing levels (Cho, Ketefian, Barkauskas, & Smith, 2015; 

Park et al., 2012; Schreuders, Bremner, Geelhoed, & Finn, 2014; Spetz, Harless, Herrera, & 

Mark, 2013; Unruh, 2003).  Other studies have  researched the scope of practice for advanced 

practice registered nurses (APRNs) - nurses with additional graduate level training and 

certification - and compared  APRNs to physicians  in terms of primary care outcomes (Carr-Hill 

& Currie, 2013; Naylor & Kurtzman, 2010; Pohl, Hanson, Newland, & Cronenwett, 2010; Xue 

et al., 2015).  Only three studies examine the supply of RNs and the health status of the 

populations they serve (Bigbee, 2008; Bigbee et al., 2014; Fields et al., 2015).  Another study 

considers the effect of RN supply’s effect on organizational nurse staffing (Blegen et al., 2008).  

 Most research on the supply of providers and their effect on population health focuses on 

physicians. These pioneering studies were reviewed to understand an analogous situation. This 

corpus of physician-focused studies is helpful since one research question will test if the 

association between physician supply and improved population health status or health outcomes 

can be extended to the RN supply.  

The criteria used to include articles in the literature review were: 1) peer- reviewed, and 

2) used U.S. data for multiple states. Further, articles needed to show a statistical association 

between RN or physician supply and health outcomes while controlling for ecological variables 

such as income, education, poverty, and income disparity. 
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Previous Studies of RN Supply and Population Health Outcomes 

The few studies about RN supply (RN to population ratios), or those that considered RNs 

as a part of a healthcare workforce affecting population health had promising results. Those three 

studies are discussed individually. 

One study was an exception to the multistate study criterion noted above. It examined 

RN-to-population and demographic and health status data for counties in Nevada. Bigbee (2003) 

found RN supply is positively correlated with female preventive healthcare, but was not 

significantly correlated with self-reported health status or age-adjusted death rates. The findings 

suggest greater RN supply might be associated with improved population health. Given small 

sample size and data from only one state, the study cannot be generalized. A subsequent study 

used states as the unit of analysis. Bigbee (2008) examined the relationship between RN-to-

population ratio and population health and compared those data to physician-to-population ratio. 

Population health was measured as the health ranking of states published by the Population 

Health Institute at the University of Wisconsin. The results showed that a high concentration of 

nurses (RN supply) was associated with improved population health, but regression analysis is 

needed to explain the relationship further.  

 In another study, Bigbee and colleagues explored the relationship between RN-to-

population ratios and population health in a cross-sectional study of national data from counties 

in 33 states. Using regression models that included nurse education (percentage of RNs with a 

BSN or higher degree) and experience (number of years since graduation), these researchers 

found significant positive associations for self-rated health, breast cancer screening rates, and 

lower teen birth rates and nurse supply, while controlling for population education, income, 

race/ethnicity , and PCP supply (Bigbee et al., 2014).  Limitations of this study included 
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overstating the number of nurses (each license was counted as an RN even if RNs were licensed 

in more than one state, and the data were only available for 33 states); and the confounding effect 

of geography (RNs were sited based on residence).  

The most recent study (2015) analyzed the link between provider-to-population ratios 

(included were ratios for RNs, physicians, and dentists), rurality, and population health in 33 

states with the most complete provider data. Measures of population health outcomes included 

self-rated health assessments, screening rate for mammograms, teen birthrate, and all-cause 

premature death rate–years of potential life lost if death occurred before age 75. Regression 

models were adjusted for county rurality. The results found counties with the highest 

concentrations of RNs, i.e., greater RN supply, had statistically significant better health 

outcomes (Fields et al., 2015). 

Advanced Practice Registered Nurse  

Several studies in nursing workforce research focused on APRNs and their role in 

providing accessible, high-quality primary care. This literature supports expanding APRN scope 

of practice and removing physician supervision requirements, as well as their importance in 

improving population health outcomes. 

In addition to suggesting the importance of RNs in improving population health, some of 

these studies compare the quality of care provided by APRNs and doctors (Bauer, 2010; Brooten 

et al., 2004; Newhouse et al., 2011; Xue et al., 2015). Study results show the care of APRNs 

equivalent to care provided by physicians with similar patient satisfaction levels, competent 

diagnoses, treatment strategies, and positive outcomes at lower costs (Brooten et al., 2004; Carter 

& Chochinov, 2007; Newhouse et al., 2011). 
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Other studies report that APRNs are more likely to serve in rural and underserved areas 

(Stange, 2014) and that an increasing proportion of primary care is being delivered by APRNs 

(Xue et al., 2015). These results support that APRNs, whose numbers are included in RN supply, 

have an important role in expanding access to healthcare, and improving health behavior 

(Brooten et al., 2004; Kleiner et al., 2014), thereby improving population health outcomes.    

In summary, there is limited research as to RN supply or RN to population ratios and the 

health of a population. Only two studies have used multiple regression analyses, and the 

researchers included gender-dependent population health outcome measures (teen birth rates, 

mammography screening) and health status self-assessments. However, both found a positive 

relationship between higher RN supply and population health. 

 

Physician Supply and Population Health Outcomes  

As noted in the introduction, the research linking PCP supply and population health 

outcomes is a conceptual basis for this study in the assumption that RN supply bears a similar 

relationship to population health. In addition, PCP supply is a critical independent variable for 

the study. 

Primary Care Physicians 

  Health policy experts assert that the supply of PCPs is insufficient for the U.S. 

population. The American Association of Medical Colleges projects a shortage of PCPs of  

betweeen12,500 and 31,100 by 2025 (Association of American Medical Colleges [AAMC), 

2015]. Unlike some developed countries in which healthcare workforce policy is shaped by 

government decision-making, the U.S. takes a fragmented, decentralized approach. This method 
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leaves decisions about whether and in what to specialize and where to practice to the individual 

physician (Brennan & Berwick, 1996; Ricketts & Fraher, 2013; Schlesinger, 2004.; Squires, 

2011). 

Others suggest the issue is not sufficiency, but maldistribution. Physicians are spread 

disproportionately across the U.S. This maldistribution affects parity of access to healthcare, 

particularly in rural areas and economically depressed urban centers. Research suggests that as 

many as seven million (2%) of Americans live in areas where demand for primary care outpaces 

supply by at least ten percent (Huang & Finegold, 2013).  It is unrealistic to expect there will be 

no variation in physician distribution, but there are disparities in access that may be only a 

function of zip code and county or state of residence. Fewer physicians mean fewer choices for a 

doctor, longer wait times for appointments,  greater travel distances, shorter appointment times, 

and higher charges as physicians become more selective about insurance coverage, or refuse to 

accept Medicare and Medicaid (Cooper, 2004; Rosenthal et al., 2005). 

Previous research links fewer PCPs to worse health outcomes (Chang, Stukel, Flood, & 

Goodman, 2011; Macinko, Starfield, & Shi, 2007; Shi et al., 2003; Starfield, Shi, & Macinko, 

2005).  Macincko et al., (2007) reviewed ten articles published between 1985 and 2005 that had 

the key terms “primary care physician supply” or “primary care supply”. They reanalyzed those 

studies to predict the effect of health outcomes when there was a one-unit increase in  PCPs per 

10,000 population. The results confirmed the association of greater supply with improved health 

outcomes at the macro level, regardless of  how health outcomes are defined – disease / total 

mortality, low birth weight infants, life expectancy and self-reported health – unit of analysis, 

urbanicity/rurality, and definitions of primary care physician (Macinko et al., 2007). 
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Chang et al. (2011) measured the link between the adult primary care physician 

workforce with individual patient outcomes for a sample of Medicare beneficiaries older than 65. 

They defined PCPs as general internal medicine and family physicians and health outcomes 

measures as mortality, ambulatory sensitive condition hospitalizations2, and Medicare spending, 

and confirmed that a higher level of PCPs was associated with better healthcare outcomes. 

Because the study was limited to fee-for-service patients, the results cannot be generalized to 

younger populations, or populations with different types of insurance coverage. However, the 

direction of the association between increased physician supply and improved healthcare 

outcomes confirms previous studies.  

In summary, these studies used the metric of PCP supply that was a derived ratio of the 

number of physicians per 10,000 people. They show a consistent positive relationship between 

more PCPs or primary care and positive population health outcomes (low birth weight infants, 

and better self-assessed health status). Higher PCP supply was negatively associated with higher 

total, cancer, heart disease, stroke, and infant mortality rates. The associations suggested between 

PCP supply and population health may persist over units of analysis including state, county, and 

metropolitan statistical area. 

Specialist Physicians  

The relationship between PCP supply and better population health does not hold for the 

specialist physician supply. A 2005 study by Starfield and colleagues examined data for almost 

100% of U.S. counties for 1996-2000 and used age-adjusted, standardized all-cause mortality 

                                                 
2 Ambulatory care-sensitive conditions are 18 chronic conditions that, if effectively managed in the 
outpatient setting, should not require hospitalization:  asthma, diabetes, hypertension, congestive heart 
failure, and chronic obstructive pulmonary disease are examples. 
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rates (deaths/1000 population), and heart disease and cancer mortality as health outcome 

measures. The study also compared numbers of PCPs and specialty physicians, adjusted for 

socio-demographic variables associated with higher mortality rates. The results are thought 

provoking. Higher specialist to population ratios were associated with higher all-cause and age-

adjusted mortality rates,  higher cardiovascular disease and cancer mortality rates, higher infant 

mortality and greater incidence of infants with low birth weights (Shi, Macinko, Starfield, Xu, & 

Politzer, 2003; Shi, 1994; Starfield, Shi, Grover, et al., 2005). The relationship is not statistically 

significant when socio-demographic variables are used as controls. This contrasts with the 

findings regarding population health outcomes of PCPs discussed above.  

More importantly, the 2005 Starfield et al. study was repeated two years later using 

multiple regression and geographically weighted regression (GWR) models.  The presence of a 

relationship was confirmed.  However, the direction of association was not consistent across the 

country and showed clusters in heavily populated areas using GWR. PCPs are consistently 

associated with lower mortality on the East Coast, the mid-West, and in Washington State. The 

study found other regions with varying strengths of the relationship between type of provider and 

population health outcomes and regions with no relationship (Ricketts & Holmes, 2007).  The 

authors suggest the findings that differ from the Starfield et al. (2005) study result from 

geographic clusters, analytic methods, or variable specification differences. Therefore, the 

relationship between clinician supply and mortality required further exploration to identify 

causation or find additional correlates. 
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Table 2 RN & PCP Supply Impact on Population Health Outcomes Literature 

Author, Year 
 

Study Focus Variables Design Results 

RN Supply     
Bigbee, 2003 Relationship between 

RN Supply and 
population health 
indices 

RN supply 
Self-reported health status 
% pregnant women seeking 
prenatal care 
Accidental death rate 
Avg life expectancy 
Age-adjusted death rate 
# of sick days/year 
Suicide rate 
 

Correlational secondary 
analysis using 17 counties 
in Nevada as unit of 
analysis 

County RN supply 
significantly correlated with 
% of pregnant women 
obtaining prenatal care in the 
first trimester, & accidental 
death rate 
County RN supply was not 
significantly related to self-
reported health status, Avg. 
life expectancy, age-adjusted 
death rate, # sick days per 
year, and suicide rate. 
Direction of all correlation 
coefficients supportive of RN 
supply’s effect on population 
health  
 

Bigbee, 2008 Relationship between 
RN supply and 
population health 
indices 
 

RN supply 
MD supply 
state health rankings 

Correlational secondary 
analysis using states as 
unit of analysis 

Significant association 
between RN supply and state 
health ranking 

Bigbee et al., 
2014 

Relationship between 
RN supply and 
population health 
indices 
 

RN-Supply (RN, Public Health 
RN, School RN) 
Physician to Population ratio 
PCP to population ratio (DV3) 
Mammography screening rates 

Cross-sectional secondary 
data analysis using 
counties (2,017) as unit of 
analysis in linear 
regression models adjusted 
for education, income, 

Significant association 
between RN supply and 
population health indices 

                                                 
3 DV – Dependent Variable 
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Author, Year 
 

Study Focus Variables Design Results 

Self-report of fair or poor 
health 
Teen birth rate 

race/ethnicity, PCP per 
capita 
 

Fields, Bigbee, & 
Bell, 2015 

Relationship between 
clinician-to-
population ratios 
(RN, MD, DMD 
supply), rurality and 
population health in 
U.S. counties 

County level provider to 
population ratios  
Rurality 
Years of potential life lost 
Self-report of fair or poor 
health 
Teen birth rate 
Mammography rates 
 

Cross-sectional secondary 
data analysis using 
counties as unit of analysis 
in linear regression models 
adjusted for education, 
income, race/ethnicity 

Highest RN-to-population 
ratio associated with 
significantly better health 
measures in most urban/rural 
categories; the degree of 
associations generally 
increasing with county 
rurality. 
 

Primary Care Physician (PCP) Supply 
Chang, Suckel, 
Flood & 
Goodman, 2011 

Association between 
the adult  PCP 
workforce and 
individual patient 
outcomes in 6,542 
primary care service 
areas 

PCP per 100k population (DV) 
Primary care FTEs per 100k 
beneficiaries (DV) 
Mortality 
ASCH hospitalizations 
Medicare program spending  
Controlling for age, sex, race. 
chronic condition, zip code 
area median income, hospital 
area specialty workforce, 
hospital area bed supply, 
spending 

Cross-sectional analysis of 
outcomes of a 2007 20% 
sample of fee-for-service 
Medicare beneficiaries> 65 
yrs (N=5,132, 936), using 
2 measures of adult PCP 
(general internists and 
family physicians) across 
Primary Care Service 
Areas (N=6542): (1) AMA 
Masterfile nonfederal, 
office-based 
physicians/total population 
and (2) office-based 
primary care clinical FTEs 
per Medicare beneficiary  
 

Higher levels of 
PCPworkforce were generally 
associated with more 
favorable patient outcomes 
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Author, Year 
 

Study Focus Variables Design Results 

Macinko, 
Starfield, & Shi, 
2007 

Examination of PCP 
supply effect size 
and the predicted 
effect on health 
outcomes of a one-
unit increase in PCP 
per 10,000 
population 

 Meta-analysis of data from 
published studies of the 
impact of PCP supply on 
health outcomes in the 
U.S. Articles from a search 
of the PubMed database in 
January 2005 for titles 
including the terms “PCP 
supply” or “primary care 
supply” for articles 
published between 1985 
and 2005. Ten articles met 
the inclusion criteria. 
 

PCP supply was associated 
with improved health 
outcomes, including all-cause, 
cancer, heart disease, stroke, 
and infant mortality; low birth 
weight; life expectancy; and 
self-rated health in all units of 
analysis. Pooled results for 
all-cause mortality suggest 
that an increase of one PCP 
per 10,000 population was 
associated with an average 
mortality reduction of 5.3%.  

     
Shi, Macinko, 
Starfield, 
Politzer, Wulu & 
Zu, 2003 

Association between 
availability of 
primary care and 
income inequality on 
several categories of 
mortality in 3081 
U.S. counties 
 

All-cause mortality (DV) 
Heart disease mortality (DV) 
Cancer mortality (DV) 
Primary care resources 
Income inequality 
Socio-demographics 
 

Cross-sectional study of 
data with ordinary least 
squares regression 
 
 

Counties with higher 
availability of primary care 
resources saw  
2-3% lower mortality than 
counties with less primary 
care 

Shi, Macinko, 
Starfield, Xu, & 
Politzer, 2003 

Whether availability 
of primary care 
reduces the effect of 
income equality on 
stroke mortality 

Stroke mortality standardized 
for age (DV) 
Gini coefficient 
MD supply 
Education levels 
Unemployment 
Race/Ethnicity 
% urban 
 

Pooled time-series cross-
sectional analysis 1985-
1995 (n=549) using 
contemporaneous and 
lagged models 

 PCP  supply negatively 
associated with stroke 
mortality. Impact of income 
inequality reduced with 
greater MD supply but 
disappears with control 
variables. 
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Author, Year 
 

Study Focus Variables Design Results 

Shi, Macinko, 
Starfield, Xu, 
Regan, Politzer & 
Wulu, 2004 

How PCP supply 
(office-based PCPs 
per 10,000 
population) 
moderates the 
association between 
social inequalities 
and infant mortality 
and low birth weight 

Low birth weight 
Infant mortality per 1000 live 
births  
Gini coefficient  
Primary care supply 
% African-American  
% of metro population  
 % unemployed population  
% Population >25 years and 
completed 12 years of 
education  

Pooled cross-sectional, 
time series analysis of 
secondary data for 50 U.S. 
states 1985–1995  

Primary care was negatively 
associated with infant 
mortality and low birth weight 
in all models and association 
was consistent in 
contemporaneous and time 
lagged models. Income 
inequality was positively 
associated with low birth 
weight and infant mortality 
(p,0.0001), but the 
relationship with infant 
mortality not present with the 
addition of sociodemographic 
covariate 
 

Shi & Starfield, 
2001 

The difference in 
effect of income 
inequality and  PCP 
supply on mortality 
among Blacks 
compared with 
Whites. 

Total mortality, White/Black 
(DV) 
Gini coefficient ,  PCP-to-
population ratio Per capita 
income % Population without 
elementary education 
%Workforce population 
unemployed  
% Population urban  
% Population below poverty 

Multivariate ecologic 
analysis of 1990 data from 
273 U.S. metropolitan 
areas 

Both income inequality and 
PCP supply were significantly 
associated with White 
mortality with inclusion of the 
socioeconomic status 
covariates, the effect of 
income inequality on Black 
mortality remained 
significant, but the effect of 
PCP supply was no longer 
significant, especially in areas 
with high income inequality. 
 

 
Specialist Supply 
Shi, 1994 
 

Relationship between 
primary and specialty 

Total mortality (DV) 
Cardiovascular and cancer 
mortality (DV) 

Multiple regression models Primary care significantly 
related to better health status, 
correlating with lower overall 
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Author, Year 
 

Study Focus Variables Design Results 

care and population 
health outcomes  

Life expectancy (DV) 
Infant mortality (DV) 
Low birth weight (DV) 
Socioeconomic environment: 
education, income, 
urbanization and pollution 
Lifestyle index: seat belt usage, 
obesity, smoking 
%elderly, % minority 
Medical care: specialists, PCP, 
hospital beds 
 

mortality, lower cancer and 
cardiovascular mortality, 
longer life expectancy, lower 
neonatal death rate, and lower 
low birth weight.  
Specialty physicians are 
related to higher total 
mortality, deaths due to heart 
diseases and cancer, shorter 
life expectancy, higher 
neonatal mortality, and higher 
low birth weight.  
 

Shi, Macinko, 
Starfield, Wulu, 
Regan & Politzer, 
2003 

Strength of 
relationships 
between primary 
care, income 
inequality, and 
population health in 
50 states 

Age-standardized all-cause 
mortality (DV) 
Mortality 
Income inequality (Gini & 
Robin Hood indices) 
Total aggregate income 
Median income 
PCP Supply 
Specialist MD Supply 

Ecological cross-sectional 
design for 1980, 1985, 
1990,1995 including 5-
year time lagged IVs in 
weighted multivariate 
regression models 

In all four time periods, both 
contemporaneous and time 
lagged income inequality 
measures significantly 
associated with all-cause 
mortality; contemporaneous 
and time lagged PCP supply 
associated with lower all-
cause mortality; specialist 
supply associated with higher 
all-cause mortality 

Starfield, Shi, 
Grover & 
Macinko, 2005 

Relationship between 
specialist physician 
supply, PCP supply, 
and mortality rates 

 PCP supply 
Specialist supply 
Age-adjusted standardized 
mortality rates 
Heart disease mortality 
Cancer mortality 
per capita income, % high 
school education, 

Pooled cross-sectional 
multivariate analyses at the 
county level  
 

Lower mortality rates where 
there are more PCPs, but not 
for specialists 
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Author, Year 
 

Study Focus Variables Design Results 

% unemployment, % elderly, 
% black, % below poverty, % 
in MSA 
 

Ricketts & 
Holmes, 2007 
 

Examination of MD 
supply amd mortality 
for a consistent 
relationship across 
regions (repeats 
Starfield, Shi, Grover 
& Macinko, (2005) 
with new statistical 
method) 

age-adjusted all-cause 
mortality (DV) 
age-adjusted disease-specific 
mortality (DV) 
MD supply 
Specialist MD supply 
Per capita income 
Percent high school 
education 
Unemployment rate 
Percent elderly 
Percent African 
American 
Percent in poverty 
Percent in MSA 

OLS and geographically 
weighted regression 
models with  
were specified using 
pooled data from 1996 to 
2000  
The residuals from the 
OLS models were mapped 
and examined for potential 
clustering. A series of 
geographically weighted 
regression models run for 
all 3,070 counties and the 
z-scores and significance 
of the models mapped. 

With geographic weight the 
relationship between primary 
care and specialist physician 
supply and mortality is mixed 
and show strong regional 
patterns. Evidence of 
regionally focused association 
between physician supply and 
mortality, holding constant 
population characteristics that 
reflect socio-economic 
characteristics but not 
consistent across the U.S.   
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Demographics and Socio-economic Factors 

In population health research, determinants of health include various socio-economic 

factors such as physical environment and health behaviors. “Socio-economic factors are not 

only important health determinants themselves, but can also buffer or enhance the impact of 

ecosystems on human health.” (Oosterbroek, de Kraker, Huynen, & Martens, 2016) p.238.  

The following section discusses the demographic and socio-economic factors and their 

suitability for inclusion as controls in the study. 

Education and Income 

Education, or the level of educational attainment, is a well-documented control 

variable in studies of populations. Education, measured by years of school completed or 

degree(s) earned, is positively correlated with income, employment, social support, and 

community safety. It is reasonable to extrapolate level of education as associated with health 

literacy, ability to navigate the healthcare system, and, by extension, population health (Ross 

& Mirowsky, 1999; Shi & Starfield, 2001; Winkleby, Fortmann, & Barrett, 1990). Education, 

too, is positively correlated with factors including physical environment and health behavior 

that affect health status (Cutler, Lleras-Muney, & Center, 2006; Susan Egerter et al., 2011; 

Ross & Mirowsky, 1999). More education prepares individuals to hold jobs with higher 

incomes. Higher income jobs are more likely to offer health insurance coverage, paid time 

off,  and a safer work environment (Cutler et al., 2006).  

Income is also a predictor of healthcare access and affordability of services. Higher 

incomes allow individuals greater choice of physical environment such as more options for 

place of residence, mode of transit and transit time to work, as well as control of leisure time 

(Egerter et al., 2011; Ross & Mirowsky, 1999).  
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Conversely,  individuals in relative poverty  are likely to practice poor health 

behaviors that lead to chronic health conditions, stress, and risk of increased mortality 

(Geronimus, Hicken, Keene, & Bound, 2006b; Lantz et al., 1998; Williams, 2002). Also, 

income inequality is linked to lung cancer in female patients, and causal relationship between 

lung cancer and smoking is well known (Lynch et al., 2004). Increased mortality, particularly 

from cardiovascular disease and poor health, can be linked to income inequality. Community-

level income equality or concentrated poverty serves as a source of stress, with an associated 

decrease in social support.   

The choice of where to live and work influences health indirectly through social 

support or social network. A vast literature clearly demonstrates the role of neighborhood in 

individual health outcomes (Acevedo-Garcia, Lochner, Osypuk, & Subramanian, 2003; 

DeGuzman & Kulbok, 2012; Liu, Wilson, Qi, & Ying, 2007; Lovasi et al., 2012; Winkleby et 

al., 1990), on social support and safety (Aday, 1993; Haughton & Stang, 2012; Sampson, 

Raudenbush, & Earls, 1997) and on air quality (Chen, Goldberg, & Villeneuve, 2008).  

In addition to social support, family, friends, and neighbors provide peer pressure that 

may affect health behaviors such as smoking, exercise, use of alcohol, and diet. A 

longitudinal study examining the association between income and life expectancy suggested a 

link between life expectancy and income that varied with U.S. geographic location. Further, 

the variation in life expectancy was strongly related to health behaviors such as smoking, 

diet, and exercise (Chetty et al., 2016). 

Age 

It is common to include age in population health research since age predicts 

healthcare utilization. This is supported by Centers for Medicare & Medicaid Services (CMS) 

statistics that the 65 and older per capita healthcare spending is five times more than 
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healthcare spending per child and three times that for adults of working age (Centers for 

Medicare & Medicaid Services, 2016).  

As a variable, the role of age on health outcomes is ambiguous in the literature, 

varying with the phenomena under study. Due to ambiguities in the literature, this study 

includes age as a controlling factor. Age will be measured as the percentage of the population 

in the county older than 65. 

Race 

Prior research has confirmed disparities in health outcomes for Blacks/ African 

Americans, even more so when their race is separated from socioeconomic status (Braveman, 

Cubbin, Egerter, Williams, & Pamuk, 2010; Buys et al., 2015; Geronimus et al., 2006; 

LaVeist, 2005; Ramaswamy & Kelly, 2015; Thorpe et al., 2012; Wallace et al., 2013). 

Differences in health outcomes for a Black population persist regardless of educational levels 

when compared with those for a White population with otherwise similar characteristics 

(Braveman et al., 2010).   

Other structural factors affecting predominantly Black population are racial 

stigmatization and disadvantage. In addition, Blacks or African-Americans are genetically 

predisposed to certain chronic conditions or diseases. Geronimus et al (2006) introduced 

another stress factor faced by this population that would increase their unmet health needs. 

His hypothesis of "weathering" is proposed as the potential for Blacks to have health 

deterioration earlier in their lifetimes than expected, due to the aggregate consequences of 

social and or economic hardship and political ostracism. The study, which was based on 

review of National Health and Nutrition Examination Survey data for black and white 

individuals, confirmed that “[t]he stress of living in a race conscious society … may cause 

disproportionate physiological deterioration such that a Black individual may exhibit the 
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morbidity and mortality of a White individual who is significantly older” and these 

differences were not attributable to poverty (Geronimus, Hicken, Keene, & Bound, 2006a, p. 

826). Another study of death records and 2000 census data for seven poverty-stricken areas 

for the period indicates excessive rates of early onset chronic disease in concentrated poverty 

areas among working age residents. Higher rates were observed for the Black residents 

(Geronimus et al, 2011). 

To account for these disparities, the percent of Black population in the county is 

included in this study. 

Insurance Coverage 

In addition to income, health insurance coverage may contribute to health outcomes. 

Insurance allows access to care for treatment of chronic conditions, and visits for prevention 

(Thorpe et al., 2012).  Communities with higher rates of insurance coverage have higher rates 

of utilization of health care services (Kullgren, McLaughlin, Mitra, & Armstrong, 2012).  

Studies that explore an association between insurance coverage and healthcare access 

or healthcare utilization show mixed results. Anderson, Dobkin, and Gross, (2010) examine 

this relationship in private health insurance4 using the “age-out” of eighteen year olds from 

parental plans during the period 1997-2007 using the National Health Interview Survey and 

administrative records of emergency department (ED) visits and inpatient admissions. They 

compared healthcare usage of teenagers just before and after their eighteenth birthday and 

found robust evidence that without health insurance, ED visits decrease. This is contrary to 

the supposition that the uninsured seek care in the expensive setting of the ED as the 

healthcare access point of last resort (Hunold et al., 2014; Kwack et al., 2004). However, 

                                                 
4 As opposed to public insurance programs. These researchers contend that Medicare or 
Medicaid population are at low risk of waiving insurance coverage. 
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because the population is so specific, generalizability is limited. Further, with the advent of 

the federal Affordable Care Act and the attendant state Medicaid eligibility expansions it was 

predicted that ED utilization was expected to increase (Glied & Ma, 2015) 

Given the ambiguity regarding the influence of insurance on health, the percent 

insured in a county is included in this study as a proxy for access to healthcare. 

Obesity 

The population health outcomes in this study can be the result of multiple conditions 

and the sequelae of poor health behaviors. Various lifestyle factors – diet, lack of physical 

activity, smoking, illicit drug and alcohol abuse — impact chronic disease incidence, and 

ultimately the adult population health outcomes selected for inclusion in this study.  Obesity 

is known to be associated with some of the chronic illness outcomes in this study 

(cerebrovascular, cardiovascular, and ischemic heart disease), multiple co-morbidities, as 

well as type II diabetes and asthma (Guh et al., 2009; Patterson et al., 2004; Yang et al., 

2015). Given this association, obesity is included as a control variable. 

 

Control Variable -Structure 

Urbanicity 

The U.S. Office of Management and Budget classifies counties as metropolitan or 

non-metropolitan. Metropolitan counties include a central city or cities of 50,000 residents, or 

more. Non-metropolitan counties are those counties with fewer residents (Ricketts, Johnson-

Webb, & Taylor, 1998).  In the literature, county population size and proximity to 

metropolitan area are used for comparative and classification purposes. The measure assures 

that there is consideration of the structural factors that lead to health and healthcare access 

inequality between urban and rural counties. The effect of place  - the presence or absence of 
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neighborhood characteristics such as crime, food deserts or a lack of green spaces - can 

contribute to unmet needs in populations, potentially leading to greater incidence of chronic 

disease, higher mortality, and lower life expectancy (Singh & Siahpush, 2014). Having less 

but needing more results in health disparities that is not just the effect of age, race, or 

individual health behavior.   

Since the counties in the region being studied vary widely, urbanicity will be included 

as a modifier of the relationship between provider-to-population ratios and county-level 

population health measures. Using the U.S. Department of Agriculture Economic Research 

Service’s 2013 Rural-Urban Continuum Codes (RUCC), counties will be classified as 

metropolitan or large, medium or small nonmetropolitan. The RUCC include nine classes: 

three define different-size metropolitan counties, and six distinguish nonmetropolitan or rural 

counties based on degree of urbanization and adjacency to metropolitan areas (Fields et al., 

2015). 

Literature Summary 

Much previous research has documented a relationship between physician supply and 

population health outcomes while a very small amount has found a relationship between RN 

supply and population health. The research has been cross-sectional and has focused on PCP 

supply. Some studies have found that greater numbers of PCPs  are associated with fewer 

hospitalizations for ambulatory-sensitive conditions (an indication of better primary care 

access leading to improved population health outcomes) and lower mortality, however 

geographical clusters are indicated. It is notable that cross-sectional studies might be subject 

to omitted variable bias (direction not known) if provider supply is correlated with factors not 

observed in the model. A summary of these studies is presented in Table 1. In addition, this 
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literature review examined studies that explore other factors related to population health. 

These factors will be control variables in the analysis. 

Gaps in Existing Literature 

Much is known about the impact of primary care and specialist physician supply on 

population access and health outcomes (Chang et al., 2015; Macinko et al., 2007; Shi & 

Starfield, 2001; Shi et al., 2003; Shi et al., 2004; Shi, 1994; Shi et al., 2005, 2003). However, 

there are still several crucial unanswered questions about the role of RNs in population health 

outcomes despite the extensive role of RNs in care delivery, patient education, and treatment 

follow-up in a variety of settings. 

Research to date on the population health impacts of RN supply has used self-

assessed health status, county health ranking, and gender-specific interventions as the 

selected population health outcome measures. Few RN supply studies use regression analysis 

with disease specific or total mortality rates as outcome measures as was done in physician 

supply research. No previous RN supply study has used a lagged model to test the potentially 

delayed impact of RN supply on population health outcomes. This study will compensate for 

the limitations of previous research by using objective population health outcome measures 

and using a distributed lag model. 

Contribution of the Study and Research Question 

This study identifies the effect of RN supply on specific population health measures 

in the U.S. It builds on prior studies examining relationships between nurse staffing and 

patient outcomes at facility levels. It adds to the evidence regarding the effects of RN supply 

on the micro level (e.g., hospital/health facility level), and informs the field about RN supply 

on the macro level (e.g., population health, and healthcare delivery by using more robust 
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measures of population health outcomes. The results inform policies to help ensure RN 

workforce adequacy as suggested by the IOM report, The Future of Nursing.  

This study fills a void in the literature and answers the research question: What is the 

impact of RN supply on population health outcomes?   

Chapter Summary 

This chapter reviews the model for population health outcomes that is the framework 

for this research and discusses relevant literature concerning population health and RN 

supply. The framework section discusses Kindig, PHI, eco-epidemiological, and Donabedian 

SPO frameworks and integrates them into a model showing the relationship between RN 

supply and population health, with demographic, socio-economic and environmental 

controls. The literature review section summarizes previous research about clinician-to-

population ratios including RN supply and health outcomes. Special attention is given to 

research on physician supply (both PCPs and specialist physicians) and population health for 

two reasons:  first, the link between physician supply (PCP supply) and population health has 

been explored much more than between RN supply and population health and thus provides 

significant insight on the current research; second, PCP supply is an essential independent 

variable in the research design that is discussed in Chapter Three. Finally, as guided by the 

Kindig and PHI frameworks for determinants of population health the literature is examined 

for control variables that affect the relationship between RN supply and population health 

outcomes. 
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CHAPTER THREE: METHODOLOGY 

This chapter discusses the hypotheses, research design, measures, data sources, 

procedures, and the statistical analyses used to answer the research question: What is the 

relationship between RN supply and population health?  

The hypotheses of this study and their alternatives are: 

H1o: There is no relationship between RN to population ratio and the rate of low birth 

weight infants in a county. 

H1a: Higher county-level RN to population ratios are related to lower rates of low 

birth weight infants in that county. 

H2o: There is no relationship between RN to population ratio and infant mortality 

rates. 

H2a: Higher county-level RN to population ratios are related to lower infant mortality 

rates in that county. 

H3o: There is no relationship between RN to population ratio and total mortality 

rates. 

H3a: Higher county-level RN to population ratios are related to lower total mortality 

rates in that county. 

H4o: There is no relationship between RN to population ratio and the 

cerebrovascular mortality rates. 

H4a: Higher county-level RN to population ratios are related to lower rates of 

mortality due to cerebrovascular disease in that county. 

H5o: There is no relationship between RN to population ratio and the ischemic heart 

disease mortality rate. 
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H5a: Higher county-level RN to population ratios are related to lower rates of 

mortality due to ischemic heart disease in that county. 

H6o: There is no relationship between RN to population ratio and cardiovascular 

disease rates. 

H6a: Higher county-level RN to population ratios are related to lower rates of 

mortality due to cardiovascular disease in that county. 

H7o: There is no relationship between RN to population ratio and chronic lower 

respiratory disease. 

H7a: Higher county-level RN to population ratios are related to lower rates of 

mortality due to chronic lower respiratory disease in that county. 

Described in the sections that follow, the research examines the relationship between RN 

supply and population health outcomes based on the conceptual framework and literature 

review presented in Chapter Two.  National data were analyzed using descriptive statistics, 

and regression models.  

Research Design  

As guided by eco-epidemiological theory, this study is an unmixed and ecological 

cross-sectional study. The analyses compared population- level characteristics to draw 

inferences only about the population as a group. The unit of analysis was the 3,108 counties 

and county equivalents in the 48 contiguous states and the District of Columbia and is a 

cross-sectional analysis using national data. 

A cross-sectional study design of secondary data is generally robust in external 

validity because it allows simultaneous examination of all elements of the population of 

interest. The generalizability of this design is bolstered by having a large dataset and 

replication. However, this study was restricted to variables already collected in AHRF, the 
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unit of measurement, and the variable definitions used at collection by the various agencies. 

Because the study is non-experimental, internal validity is weak. However, the large data set 

strengthened the internal validity of the study. No causal relationships can be inferred from 

this analysis; only associations can be identified for future research. Cross-sectional research 

typically rules out threats of testing, instrumentation, history, maturation, attrition, and 

selection interactions to internal validity (Babbie, 2013; Campbell & Stanley, 1963).   

A special aspect of this study's design is that the predictor variable, RN supply, and 

control variables such as PCP supply and insurance coverage, are anticipated to have an 

asynchronous effect on the outcome variables in the hypothesized relationships. That is to 

say, a population health outcome manifests not only in the same time period, but also after an 

encounter with clinicians (the variables “RN supply” and “PCP supply”) and both during and 

after health insurance or lack of it affects the decision to seek care. This scenario is well 

suited to distributed lag regression modeling (Baltagi, 2008; Verma, Clark, Leider, & Bishai, 

2016).  

Due to these long-term relationships – those between health workforce and population 

health outcomes and those between insurance status and health outcomes – the outcome 

variables in this analysis ( population health measures) are  associated with the supply and 

insurance variables in the same time period as well as a period lagged by three to four years 

compared to the RN and PCP supply variables (Shi et al., 2003; Shi et al., 2004). A 

sensitivity analysis was conducted to compare the results of this distributed lag model with a 

contemporaneous model, in which the lagged variables are replaced with variables from the 

same time frame. 

The threat of history describes changes to a study that occur in the interval between 

outcome measurements and uncontrollable environmental effects. In a cross-sectional study, 

history is normally not a concern since measurements are a snapshot at a single point in time. 
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However, this study compares outcome variables to lagged predictor variables, which raises a 

concern such that the mortality observed in 2014 may be due to factors other than predictors 

measured years earlier. This threat is mitigated since population health outcome measures are 

proximal as well as distal, and the selected measures were operationalized as moving 

averages over three or five years. Measures are discussed in the following section. 

Measures 

As part of the literature review in Chapter 2, the population health outcome measures 

were identified in prior research. This section lists operational definitions. These are based on 

AHRF definitions for these variables (AHRF 2015-2016 Release) using county of residence. 

All outcome variables use a three (2012 - 2014) or five (2010 -2014) -year moving average. 

For example, the three-year moving average is defined as:  

 

(2012 outcome rate + 2013 outcome rate + 2014 outcome rate) 
    3        

 

Total Mortality Rate.  

This measure is the moving average of deaths from all causes in the county per 

100,000 population for the years 2012 to 2014.   
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Mortality - Cerebrovascular Disease 

Using the AHRF definition, this variable is the three-year moving average of deaths 

due to cerebrovascular disease (ICD-105 codes 160-169) in the county per 100,000 

population for the years 2012, 2013, and 2014. 

 

Mortality - Ischemic Heart Disease 

This variable is the three-year moving average of deaths from ischemic heart disease 

(ICD-10 codes 120-125) in the county per 100,000 population for the years 2012, 2013, and 

2014. 

Mortality - Other Cardio-Vascular Disease 

This variable is the three-year moving average of deaths from other cardio-vascular 

disease – such as rheumatic heart disease, hypertensive heart disease, atherosclerosis –  in the 

county per 100,000 population for the years 2012, 2013, and 2014. 

Mortality - Chronic Lower Respiratory Disease.  

This variable is the three-year moving average of deaths due to chronic lower 

respiratory disease (ICD-10 codes J40- J47) in the county per 100,000 population for the 

years 2012, 2013 and 2014. 

  

                                                 
5 The 10th iteration of the International Statistical Classification of Diseases and Related Health 
Problems (ICD), a medical classification list by the World Health Organization (WHO). 
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Infant Mortality 

This variable is the five-year moving average for deaths of infants less than one year 

of age in the county per 1,000 live births for the years 2010 – 2014. It is calculated from the 

formula shown in equation 1: 

 

Infant mortality (5 Year) = (5-Year Infant Deaths < 1 Year x 1000) 
     5-Year Live Births    (1) 

 

Low Infant Birth Weight 

This measure is the moving average rates of infants who weigh less than 2500 grams 

at birth per 1,000 live births for the years 2012, 2013 and 2014 (as shown in equation 2). 

 

Low infant birth weight = (3-Year Infants Born < 2500 grams x 1000) 
     3-Year Live Births    (2) 
 

 

Predictor (Independent) Variables 

Clinician-to-population ratios are a comparative index of provider supply - as an 

estimation of healthcare workforce requirements- and are a proxy for the adequacy of access 

to healthcare. The ratio is calculated as the number of clinicians available to serve a specific 

number of patients in a given area (Bärnighausen & Bloom, 2009; Chen & Lowenstein, 

1985).  
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RN Supply 

For this study, RN supply is a ratio of the number of licensed RNs per 100,000 

population (both part and full time) (Fields et al., 2015). Location of nurses within the 

professional registry data is listed as residential address. This definition excludes licensed 

practical nurses (LPNs), licensed vocational nurses (LVNs), and certified nursing assistants 

(CNAs). 

 It is calculated from the following formula: 

 

Total number of RNs X 100,000 
    Total population 
 

 

Control Variables 

The models will be adjusted for variables based on other researchers’ experience with 

population characteristics associated with higher mortality and other population health 

outcomes (Starfield, Shi, Grover, et al., 2005). These control variables include: PCP supply, 

county classification as either rural or urban and proximity to metro area, county level 

percentages of the population with health insurance coverage, median county income, 

percentages of people in the country age 65 or older, percentage of the population in different 

racial groups, and percentages of the population with a higher educational level. Specifically:  

PCP Supply 

 PCP supply, another clinician to population ratio, is the number of licensed primary 

care physicians (those in general family medicine, general practice, internal medicine, and 

pediatrics) per 100,000 population in active patient care. 
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Health Insurance Coverage  

Estimates of individuals with health insurance coverage are derived in AHRF from 

the American Community Survey (ACS). The data sum responses to survey questions about 

current health insurance coverage. The survey data, population estimates, aggregate federal 

tax returns, and social welfare program participation informs a U.S. Census predictive model 

(AHRF 2015-2016 Release). Data are reported as percentages of the population in the county. 

Urbanicity 

 Using the U.S. Department of Agriculture Economic Research Service’s 2013 Rural 

Urban Continuum Codes (RUCC), counties will be classified as metropolitan or large, 

medium or small nonmetropolitan (Fields et al., 2015). These nine classes will be obtained 

from the AHRF data and will be merged into four categories for the analysis using degree of 

urbanization as listed in Table 3. 

 

Table 3 Urbanicity Classifications 

Urbanicity Urban-rural continuum— 
Nine levels of classification based on size of population and relation to 
metropolitan (metro) area 
 

 Original Classes New Classes 
1 1—1 million or more in metro area 

2—250,000 – 1million in metro area 
3—<250,000 in metro area 
 

Metropolitan 

2 4—>= 20,000, adjacent to metro area 
5—>= 20,000, not adjacent to metro area 
 

Large Non-Metro 

3 6—2,500 – 19,999, adjacent to metro area 
7—2,500 – 19,999, not adjacent to metro  
 

Medium Non-Metro 

4 8—< 2,500 adjacent to metro area 
9—< 2,500 not adjacent to metro area 
 

Small Non-Metro 

  



57 
 

Income 

 Median family income in the AHRF is obtained from the ACS Summary File, U.S. 

Census Bureau. A family is defined as all persons living at the same address related by birth, 

marriage, or adoption. The ACS continuously samples by questionnaire the population to 

obtain self-reported family income data. Paper, telephone, and online responses are compiled. 

Income is gross pay (in U.S. dollars) on a regular basis and does not include voucher 

payments families receive such as food stamps, housing subsidies, and Medicaid. Income 

data for the preceding 12 months are calculated from persons aged 15 years and older. The 

median is the mid-point of income distribution of the total families in the county, and 

includes families that do not earn income (AHRF 2015-2016 Release). 

Age  

 This study will use the percentage of the estimated population in the county who are 

age 65, or older as at April 1, 2013 (AHRF 2015-2016 Release). 

Race 

  Obtained from 2013 population estimate data in AHRF, this study will use the 

percentage of the population in each county who are Black or African-American (AHRF 

2015-2016 Release). 

Education 

 The study operationalizes education as the percentage of the population in each 

county older than age 25 with four or more years of college from 2013 data (AHRF 2015-

2016 Release. 
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Obesity 

 The study operationalizes obesity as the percentage of the population in each county 

older than age 20 that have reported a body mass index of greater than, or equal to, 30 kg/m2 

(BRFSS, 2013). 

 Table 4 summarizes these variables and describes their use as outcome (dependent), 

predictor (independent), or control (other independent) variables, as well as the source of the 

data and measurement type. The most recent year of available health outcome data for total 

mortality, disease-specific mortalities, and low infant birth weight are the three-year moving 

averages from 2012 - 2014. The most recent data for the five-year average of infant mortality 

are from 2010-2014. In order to lag these dependent variables in relation to the predictor 

variable, RN supply, and two of the control variables, PCP supply and insurance coverage, 

the data for these variables will be from 2010. The rest of the control variables will all be 

from the midpoint of the three-year moving average outcome data - 2013.  
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Table 4 Variables, Definition, and Data Sources 

Measure Definition/Description Measurement 
Type 

Data  
Source 

Year 

Outcome (Dependent) Variables 

Total mortality All cause death 2012-
2014/100,000 
population 3-year 
average 

ratio AHRF  2012-2014 

Mortality -
cerebrovascular 
disease 

Mortality due to 
cerebrovascular disease 
in the county/100,000 
population, 3-year 
average 

ratio AHRF 2012-2014 

Mortality - 
ischemic heart 
disease 

Mortality due to 
ischemic heart disease in 
the county/ 100,000 
population, 3-year 
average 

ratio AHRF 2012-2014 

Mortality - 
other cardio-
vascular disease 

Mortality due to other 
cardio-vascular disease 
in the county/100,000 
population, 3-year 
average 

ratio AHRF 2012-2014 

Mortality - 
chronic lower 
respiratory 
disease 

Mortality due to chronic 
lower resp. disease in 
the county/100,000 
population, 3-year 
average 

ratio AHRF 2012-2014 

Infant mortality  Mortality of infants 
under 1 year of age in 
county/ 1,000 live 
births, 5-year average 

ratio AHRF 2010-2014 

Low infant birth 
weight 

Infants born weighing < 
2500 grams/1,000 live 
birth, 3-year average 

ratio AHRF 2012-2014 

 

Predictor (Independent)Variable 

RN Supply Licensed RNs/100,000 
population in the county 

ratio SBN 2010 (dlm, 
lm) 
2013 (cm 
& dlm) 
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Measure Definition/Description Measurement 
Type 

Data  
Source 

Year 

Control (Independent) Variables    

PCP Supply Licensed PCPs/100,000 
population in the county 

ratio AHRF 2010 (dlm, 
lm) 
2013 (cm 
& dlm) 

Urbanicity See Table 3 ordinal AHRF 2013 

Health 
insurance 
coverage 

Percentage of persons < 
65 with health insurance 
in county 

ratio AHRF 2010 (dlm, 
lm) 
2013 (cm 
& dlm) 
 

Income Median family income 
in county 

ratio AHRF 2013 

Population age % Population 65 + years 
of age in county 

ratio AHRF 2013 

Population race/ 
ethnicity 

% Black, non-Hispanic 
in county 

ratio AHRF 2013 

Education % Persons > 25 with 4+ 
years of college in 
county 

ratio AHRF 2013 

Obesity % Persons > 20 
reporting a body mass 
index (BMI) ≥  30 kg/m2 
in county 

ratio BRFSS 2013 

AHRF- Area health resource file 
BRFSS – Behavioral risk factor surveillance system 
SBN –State boards of nursing or equivalent (for each State) 
cm – in contemporaneous model 
lm – in three-year lagged model 
dlm – in distributed lag model 
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Data Sources 

As shown in Table 4, the data were obtained from several secondary sources:  the 

state boards of nursing (SBN), the area health resources file (AHRF), and the behavioral risk 

factor surveillance system (BRFSS). RNs per 100,000 population - “RN supply”- the 

predictor variable, was obtained from the nurse licensure statistics or annual reports of 48 

state nurse licensing boards. Data for all outcome and control variables were obtained from 

the area health resources file (AHRF). AHRF is publicly available and provided all county-

level data such as census data, population demographics, county urbanicity, PCP supply, and 

the selected population health outcome measures.  The BRFSS is publicly available from the 

CDC and included county level data on obesity prevalence.  

 IRB and Ethics  

This research relies on secondary analysis of publicly available county-level data 

(AHRF and BRFSS), matched to county aggregate data requested from the SBN. Personal 

identification information that would violate the confidentiality and anonymity was not 

requested, or used in the analysis, or disseminated. The data linkage via county of residence 

used common identifiers - FIPS codes. Only county-level results was reported.  Institutional 

review board (IRB) approval was sought to substantiate data requests from individual SBN. 

On review, the IRB deemed the study not human subject research – ID SBE-17-12934 (see 

Appendix for IRB determination).  

Procedures 

Data Acquisition 

 After IRB review of the study protocol and adjudication on February 15, 2017, 

requests for the RN supply data were submitted by email to the executive directors (or 
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equivalents) of SBNs for each of the 48 contiguous states and the District of Columbia on 

February 17 and 20, 2017. Data were requested for 2010 and 2013 licensed RNs by county to 

include APRN/ARNPs and exclude LVNs/LPNs.  Second request emails were sent, and 

follow-up phone calls were made during the period to March 2 to April 6, 2017.   

 From the email inquiry, 18 SBNs stated data were not available. The reasons included: 

county of residence was updated in the SBN database with the current RN residential address 

on license renewal; county of residence was not captured historically; the years of interest for 

the study, 2010 and 2013, were not available; or the agency lacked the manpower to provide 

the data.   See Table 5 for details.   

 Four SBNs indicated the data were available for a fee. Appeals for a fee waiver were 

fruitless.    

 Eight SBNs did not respond to the request for data despite several contacts.   

Table 5 Summary of State Board of Nursing Responses to Data Request 

 

State Board of Nursing Response States Number of counties or 
county equivalents 

RN data included AR, CA, FL, IA, KS, LA, 
MN, MO, NV, NM, NY, 
NC, ND, OK, SC, SD, TX, 
WA, WV 
 

1472 

Fee payment required  DE, UT, WI, WY 
 

127 

RN data not available  1166 
• Current address only/not 

associated by county, no 
historical data 

AZ, CO, DC, GA, ID, IL, 
IN, MA, MI, MT, NH, NJ, 
OH, PA, VT  
 

• Not available for 2010 
and/or 2013 

OR, MS, VA, TN 
 

• No manpower 
 

NH 
 

No response AL, CT, KY, MD, ME, 
NE, NH, RI 
 

343 
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Description of the Sample 

 Thus, not every county or county equivalent could be included in the study as planned.  

The final data set included 19 states with data for 1,472 counties representing 47% of the 

total target population of 3,108 U.S. counties and county equivalents. Regions of the U.S. 

represented are: 

 Midwest – IA, KS, MN, MO, ND, SD 

 Northeast – NY 

 Southeast – AR, FL, LA, NC, OK, SC, TX, WV 

 Southwest – CA, NM, NV 

 Northwest – WA 

This resulted in a convenience sample, although appropriate for exploratory research, is 

limited in generalizability (Babbie, 2013).  

  

Data Preparation 

  Using the U.S. Department of Agriculture Economic Research Service 2013 Rural 

Urban Continuum Codes (RUCC), counties were classified as metropolitan or large, medium, 

or small nonmetropolitan. These nine classes were obtained from the AHRF and were 

aggregated into four categories for the analysis based on degree of urbanization as specified 

in Table 3.  

 Data from AHRF was retrieved from the U.S. Department of Health and Human 

Services, Bureau of Health Professions website. Data for the states included in the study were 

downloaded for the years 2010-2014 for the selected variables at the county level. Obesity 

prevalence data from BRFSS for 2013 were downloaded from the CDC and were merged 

based on county FIPS code.  
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 To form the sample for the hypotheses, the county-level RN supply data were match-

merged with the county-level data from AHRF using county FIPS code for the 19 states. The 

data in the merged data set were cleaned and inspected for missing elements using IBM SPSS 

Statistics 23.  

 Next, the data were recoded to create the final variables in the study. RN to population 

ratios for 2010 and 2013 were calculated from the counts for licensed RNs in each county per 

100,000 population in the county from the AHRF county population data from the U.S. 

Census for the corresponding year. This calculation created the predictor variable “RN 

Supply.”  A similar calculation was conducted to create the variable PCP Supply from the 

AHRF data.  

 A variable was created from AHRF population data “Age” – percentage of population 

aged 65 and older – using the formula: 

 

Estimated female + male population (aged 65 and over) x 100 
Total population estimates for 2013 

 
 
 Using Stat/Transfer® version 13 (Circle Systems, Seattle, WA) the complete data file 

was converted from SPSS® to Stata ® format for regression analysis6. All regression models 

were generated using Stata Statistical Software: Release 14. (StataCorp LP, College Station, 

TX):  

  

                                                 
6 This was expedient. The research began at University of Central Florida where the SPSS® 
was the widely available tool until the candidate relocated and Stata® was available in the 
new environment. 
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Data Analysis 

Using the model derived from the Donabedian framework of structure, process, 

outcome (Donabedian, 1978) and guided by eco-epidemiological theory (March & Susser, 

2006; Susser, 2004; Susser & Susser, 1996)  this study controls for factors that influence 

population health by examining only ecological-level variables and uses regression models to 

control the effects of confounding variables.  

Linear regression is appropriate when the following conditions are satisfied: The 

outcome variable Y has a linear relationship to the predictor variable X. For each value of X, 

the probability distribution of Y has the same standard deviation σ. When this condition is 

satisfied, the variability of the residuals is relatively constant across all values of X, which is 

easily checked in a residual plot. For any given value of X, the Y values are independent, as 

indicated by a random pattern on the residual plot. The Y values are roughly normally 

distributed (i.e., symmetric and unimodal). A histogram or a dot plot  shows the shape of the 

distribution (Fox, 1991; Kileinbaum & Kupper, 1988).  The data were assessed for these 

conditions, as described in the paragraphs below. 

Each variable in the model was summarized with descriptive statistics for central 

tendency and variability, i.e. mean, median, range, and standard deviation. The distributions 

are described and presented in table format. Normality tests were conducted to determine 

skew, kurtosis, and the presence or absence of outliers. Outliers were examined for influence 

(leverage and discrepancy)(Fox, 1991). Problematic predictor outliers were investigated for 

errors, or conditions specific to that county. If indeed problematic, these outliers could have 

been replaced with mean values, or the minimum or maximum value within the dataset and 

the results compared. No replacements were made in the data after these investigations.  

The dependent variables obtained from AHRF were left-censored. Mortality data in 

AHRF is not reported in counties with fewer than ten mortalities per annum (U S Department 
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of Health and Human Services, 2013). Values appearing in the data as zero could take on any 

value between zero and nine. Tobit models are deemed to be appropriate for censored data 

(Breen, 1996; Burke, 2009; Carson & Sun, 2007; Muddasar Jamil Shera & Sajjad Dar, 2014) 

Bivariate analyses were conducted to determine if the variables in the model satisfied 

the assumption of no collinearity for linear regression. Pearson’s bivariate correlations were 

explored among the predictor variables. Variance inflation factors were examined for 

evidence of multicollinearity for values higher than 10 (Fox, 1991).  Where multicollinearity 

was evident, an exploratory factor analysis (Cronbach’s) was conducted to explore the 

suitability of combining predictors into a scale, and assure that non-normality of errors was 

met.  Then the results from preliminary least squares regression models were examined.  

After these procedures, quadratic terms for RN supply and PCP supply (RN supply 

squared and PCP supply squared) were created and added to the dataset.  A quadratic term is 

indicated when a curvilinear relationship is observed (Ganzach, 1998; Gianino et al., 2017).  

This non-linear association was found on scatterplots and could be supported by the 

hypothesized relationship between RN supply and the health outcome.  

For each hypothesis, a model was estimated using Stata® version 14.1 (Stata Corp 

LP, College Station, TX). Tobit regression models were used to derive beta weights and 

coefficients (β) for each hypothesis (each population health outcomes measure), using the 

RN-to-population ratios (RN supply) as the primary predictor variable. For each model, 

standard errors that are robust to heteroscedasticity was computed.  Alpha < .05 was 

considered statistically significant. The regression equation for the contemporaneous models 

is represented by equation 3: 
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Population health outcome (each of the 7 measures, in individual models)7 =      
Constant + f (b1 RN Supply + b2 RN Supply2 + b3 PCP Supply + b4 PCP Supply2 

+ b5Urbanicity + b6 Health insurance coverage + b7 Income + b8 Population age  
+ b9 Population race/ ethnicity + b10 Education + b11 Obesity) 

where b1-11 is the beta coefficient for the predictor variable    (3) 
 
 

Equation 4 is the regression equation for the distributed lag models: 

Population health outcome (each of the 7 measures, in individual models) = Constant 
+ f (b1 RN Supply + b2 RN Supply2 + b3 RN Supplyt-3 + b4  RN Supply2

t-3 + b5PCP 
Supply + b6PCP Supply2 + b7 PCP Supplyt-3 + b8 PCP Supply2

t-3 

+ b9 Health insurance coverage + b10 Health insurance coveraget-3  
+ b11 Urbanicity + b12 Income + b13 Population age + b14 Population race/ ethnicity 

+ b15 Education + b16 Obesity) 

where b1-15 is the beta coefficient for the predictor variable, t-3 denotes the lagged 
 variables, and t is 2013         (4) 

 
Equation 5 is the regression equation for the three year lagged models: 

Population health outcome (each of the 7 measures, in individual models) = Constant 
+ f (b1 RN Supplyt-3 + b2 RN Supply2

t-3 + b3 PCP Supplyt-3  

+ b4 PCP Supply2
t-3 + b5 Health insurance coveraget-3 + b6 Urbanicity + b7 Income + 

b8 Population age + b9 Population race/ ethnicity + b10 Education + b11 Obesity)  

where b1-11 is the beta coefficient for the predictor variable, t-3 denotes the lagged 
 variables, and t is 2013         (5) 

 

Chapter Summary 

This chapter presented the research question and the seven hypotheses to be tested.   

Also described are the research design and the procedures used to acquire and prepare the 

data for analysis. Data analysis included descriptive statistics to explore the normality of the 

data, and bivariate analyses to examine the direction and strength of relationships between 

variables. Linear regression models were used to test the hypothetical relationship between 

                                                 
7,Models for infant mortality measure were compared with and without the control variable 
“obesity.” 
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total mortality, disease specific mortalities, and RN supply. The products of these analyses 

are presented in Chapter 4.  
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CHAPTER FOUR: FINDINGS 

This chapter presents the statistical analyses for this dissertation. It includes 

descriptive statistics and statistical results for the research question: What is the relationship 

between RN supply and population health?  

Description of the Variables 

Table 6 includes the descriptive statistics of outcome variables for the study, which 

included 1,472 counties.  Mean rates of negative population outcomes ranged from 1 infant 

death per 1000 live births to a 1,052 total deaths per 100,000 population. Among the disease 

specific mortalities studied, the mean rates of ischemic heart disease mortality and other 

cardio-vascular disease mortality were 134 deaths per 100,000 population and 91 deaths per 

100,000 population, respectively. The mean rates of infant mortality showed positive skew, 

which was attributed to the values left censored at 10.    

Table 7 includes the descriptive statistics for the independent and control variables, 

including the mean, minimum, and standard deviation.  RN supply mean values of 1,859 RNs 

per 100,000 population from the 2013 data, and 1,679 RNs per 100,000 population in 2010 

were observed.  These data were also positively skewed.  A wealth of literature confirms that 

the presence of non-normal data in social science research is not atypical (Bono, Blanca, 

Arnau, & Gómez-Benito, 2017; Micceri, 1989).  Given that the underlying data included 

counties that reported zero RNs per 100,000 population, and some low population counties 

with proximity to major hospitals with outlier values, these data were not transformed. Other 

variables showing positive skew include education (percent of population aged 25 and older 

with four years of college) with a mean of 0.18 and standard deviation of 0.42; and race (% 

of population identified as Black) with a mean of 8.10 and standard deviation of 12.53. 



70 
 

Table 6 Descriptive Statistics for the Outcome Variables (N = 1472) 

Variable Mean SD Min Max Skewness 

Low infant birth weight/ 1000 live 

births  5.51 4.13 0.00 16.57 -0.26 

Infant mortality rate/1000 live births  0.97 2.37 0.00 13.30 2.32 

Total mortality rate/100k population 1052.26 283.43 0.00 2091.26 -0.25 

Cerebrovascular mortality rate/100k pop. 29.42 29.75 0.00 154.88 0.53 

Ischemic heart disease mortality rate/ 

100k pop. 134.23 81.51 0.00 488.40 0.15 

Chronic lower respiratory disease 

mortality rate/ 100k pop.  42.99 39.80 0.00 207.40 0.47 

Other cardiovascular disease mortality 

rate/100k pop. 

91.11 64.40 0.00 597.93 0.68 

 

.
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Table 7 Descriptive Statistics of the Predictor (Independent) Variables (N = 1472) 

Variable Mean Std. Dev. Min Max Skewness 

RN supply 2013: #RNs/100k pop. 1859.35 12559.29 0.00 430828.80 28.62 

RN supply 2010: #RNs/100k pop. 1679.18 10668.31 0.00 368265.50 28.82 

PCP supply 2013: #PCPs/100k pop. 50.67 32.87 0.00 423.73 1.72 

PCP supply 2010: #PCPs/100k pop. 50.22 31.81 0.00 426.80 1.77 

Insurance 2013: % < 65 with insurance 64.97 6.68 33.19 83.85 -0.56 

Insurance 2010: % < 65 with insurance 64.54 6.44 33.68 81.28 -0.56 

Median Household Income 2013 45,511 10,536 21,572 110,930 1.23 

Median Household Income 2010 42,337 9,301 20,577 105,987 1.36 

Population Age: % aged >65 17.54 4.61 6.70 51.60 0.72 

Education: % >25 with college 0.18 0.42 0.00 7.86 8.32 

Obesity: % >20 with BMI >=30 kg/m2 31.16 4.36 13.70 45.50 -0.11 

Race: % population Black 8.10 12.53 0.00 72.91 2.29 
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 Table 8 describes the urbanicity of the counties included in the study.  Fifty five 

percent of the counties (817 counties) were considered rural with populations of less than 

20,000. 

Table 8 Frequency of Urbanicity Classes 

 
 

Urbanicity Classes Frequency Percent  

1 Metropolitan 514 34.92 
2 Large Non-Metro 141 9.58 
3 Medium Non-Metro 494 33.56 
4 Small Non Metro 323 21.94 

 

Tobit Analysis 

Since the dependent variables of interest are left-censored and include zero values 

with non-zero probability, Tobit regression models were run with three distinct 

specifications. Specification one regressed the variable of interest on contemporaneous RN 

supply together with contemporaneous control variables. Specification two was a distributed 

lagged model where RN supply was included both with its 2013, as well as its 2010 value. 

Similarly, a set of controls was also included with both their contemporary and lagged value: 

PCP supply, health insurance, and income. Specification three only included the lagged value 

regarding RN supply and the set of control variables for the same year noted above. In all 

three specifications a set of controls (urbanicity dummies, variables capturing population age, 

obesity, and race) were included with their contemporary values. Note that in the case of 

urbanicity, the lowest category was omitted. Therefore, other dummy coefficients should be 

interpreted as partial associations relative to this lowest category 

The Tobit regression models of the three different specifications derived beta 

coefficients (β) and tests of significance using the RN-to-population ratios as the primary 

predictor variable.  Tests of significance included the likelihood ratio and Akaike information 
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criterion (AIC). The likelihood ratio chi-square is the indication that the model as a whole fits 

significantly better than a model with no predictors.  AIC is the indication of the quality of 

model relative to other models using the same the data.  The lowest value for AIC indicates 

the model with the best fit for the data (Akaike, 1974; Sawa, 2015). 

Quadratic Term Interpretation 

Since each of the models includes a quadratic term, a discussion of the interpretation 

of these results is appropriate. The relationship between the variable and the squared term 

indicates the shape of the non-linear relationship with the outcome variable in keeping with 

the standard quadratic equation y =Ax2 + Bx + C.   Coefficient A determines the width of the 

parabola and its shape.  A positive value for coefficient A indicates a convex shape (vertex 

closer to the x-axis), and a negative value indicates a concave shape, the opposite.  

Coefficient B is an aid to showing where the curve is located relative to the origin of the x 

and y-axes.  For positive values of coefficient B, the vertex is left of the origin for values of 

coefficient A greater than zero, and to the right of the origin when coefficient A is less than 

zero. For negative values of coefficient B, the opposite is true – to the right of origin for 

values of coefficient A greater than zero, and left of origin if coefficient A is less than zero. 

C, the constant, is the y-intercept. The x coordinate of the vertex is determined from the 

calculation of –B/2A  (Cohen, Cohen, West, Aiken, & Rutherford, 2003; UCLA Institute for 

Digital Research and Education, n.d.).  In the interpretation of the interaction, the coefficient 

for linear term (coefficient B) suggests the direction of the relationship. The coefficient for 

the quadratic term (coefficient A) suggests the rate of change.  

When combined these values suggest six different types of parabolas and 

interpretations. These types are summarized in the table 9 below. 
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Table 9 Guide to Interpretation of Quadratic Term 

 
 
Interpretation of result 

Conditions 
 

Coefficient 
A 

x-
coordinate 
of vertex 
(-B/2A) 

 

y-intercept Description of 
parabola 

Positive with an 
increasingly positive 
slope  

Greater 
than zero 

Close to 
zero 

Positive, 
Close to zero 

Convex (opens 
upward), right arm 
of parabola 
 

Positive with an 
increasingly positive 
slope 
 

Greater 
than zero 

Close/Not 
close to 
zero 

Negative  Convex, right arm of 
parabola only 

Negative with an 
increasingly positive 
slope 

Greater 
than zero 

Not close 
to zero 

Positive, Not 
close to zero 

Convex, left arm of 
parabola (and 
possibly remainder, 
needs more analysis) 
 

Negative with an 
increasingly negative 
slope 
 

Less than 
zero 

Close to 
zero 

Positive, Not 
close to zero 

Concave (opens 
downward) right arm 
of parabola 

Positive with an 
increasingly negative 
slope 

Less than 
zero 

Not close 
to zero 

Positive, 
Close to zero 

Concave, left arm of 
parabola (and 
possibly remainder, 
needs more analysis) 

Positive with an 
increasingly negative 
slope 

Less than 
zero 

Close/Not 
close to 
zero 

Negative Concave, left arm of 
parabola (and 
possibly remainder, 
needs more analysis) 
 

Adapted from (UCLA Stat Consulting Group, 2014) 

 

The following sections discuss the results of the seven hypotheses tested.   
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Results for Hypothesis 1 – Rate of Low Birth Weight Infants  

Hypothesis 1 tested the research question by assessing the relationship between RN-

to-population ratio and the rate of low birth weight infants in a county.  The null and alternate 

hypotheses were: 

H1o: There is no relationship between RN to population ratio and the rate of low birth 

weight infants in a county. 

H1a: Higher county-level RN to population ratios are related to lower rates of low 

birth weight infants in that county. 

The results for Hypothesis 1 are shown in table 10. There were 472 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 1124.86 (df =13), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 1130.28 (df =18), p < .001. The 

three-year lagged model, specification three, resulted in a likelihood ratio chi-square of 

1108.47 (df =13), p < .001. According to the AIC, the contemporaneous model fits best, with 

a related AIC of 6162.05 (compared with 6184.47, and 6166.6 for the three-year lagged and 

the distributed lag models respectively).  

RN supply was not significantly associated with the rate of low birth weight infants in 

any model specification.  Thus, the null hypothesis of no relationship between RN supply and 

rate of low birth weight infants in a county was not rejected. 

PCP supply was not significant in the distributed lag model; however, the variable 

was significant in the other model specifications.  In the contemporaneous model, PCP 

supply was positively related to the rate of low infant birth weight in the county (β 0.04769, p 

< .001), and PCP supply squared, was negatively related to the outcome variable (β -0.00023, 

p < .01).  The result is shown in equation 7:  
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y = -0.00023PCP supply squared + 0.04769PCP supply + 10.58   (6) 
 

The x coordinate for the vertex (- (0.04769/2*-0.00023) = 103.67, which is not close to 0.   

Similarly, in the lagged model PCP supply was positively related to the outcome 

variable (β 0.04786, p < .001), and PCP supply squared was negatively related to the 

outcome variable (β -0.00023, p < .01). The result is shown in equation 7: 

 

        y = -0.00023PCP supply squared + 0.04786 PCP supply + 9.67    (7) 

 

 

The x coordinate for the vertex (- (0.04786/2*-0.00023) = 104.04, which is not close to 0.  

These calculations indicate a positive relationship with increasingly negative slope, but could 

reach a maximum and become negative. 

Altogether this indicates a positive relationship between PCP supply and the rate of 

low birth weight infants with increasingly negative slope. However, more analysis is required 

to discover the remainder of the parabola.  

Median household income was negatively related to the rate of low infant birth weight 

in the three model specifications: contemporaneous (β -0.00008, p < .001); distributed lag (β 

-0.00007, p < .001); and three-year lagged (β -0.00006, p < .001). 

Population age was also negatively related to the rate of low infant birth weight in the 

three model specifications: contemporaneous (β -0.15597, p < .001); distributed lag (β -

0.16945, p < .001); and three-year lagged (β -0.14856, p < .001). 

Conversely, race - defined in the study as the percent of Black population - was 

consistently positively related to the rate of low infant birth weight in each specification: 

contemporaneous model (β 0.12787, p < .001); distributed lag (β 0.12743, p < .001); and 

three-year lagged (β 0.13430, p < .001). 



77 
 

The predicted rate of low birth weight infants in medium and small non-metropolitan 

areas8 were consistently lower (medium non-metro = 1.7 times and small non-metro = 8 

times) when compared to the reference group major metropolitan area in each model 

specification. 

                                                 
8 The reference group, metropolitan, includes counties with populations > 250,000 in a 
metropolitan area.  
 Large non-metro category includes those counties with populations < 250,000 but > 20,000 
either adjacent or not adjacent to metro area. Medium non-metro includes counties with 
populations >2,500, but <20,000 either adjacent or not adjacent to metro area. Small non-
metro includes counties with populations < 2,500 either adjacent or not adjacent to metro 
area. 
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  Table 10 Summary of Tobit Regression Analyses Rate of Low Birth Weight Infants 

Predictors 

Low Birth Rate 
(O) 

Contemporaneous 
Model 

 
Low Birth Rate 
(O)  Distributed 

Lag Model 
 Low Birth Rate 

(O)  Lag Model 

 

 
β 

(SE) 
 β 

 (SE) 
 β 

 (SE)    
 

RN Supply 2013 -0.00015 
(0.00013) 

 -0.00059 
(0.00030) 

   

RN Supply 2013 squared -0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

   

RN Supply 2010   0.00051 
(0.00030 

 -0.00003 
(0.00013) 

 

RN Supply 2010 squared   -0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

 

PCP Supply 2013 0.04769 
(0.01025) 

*** 0.03769 
(0.02055) 

   

PCP Supply 2013 squared -0.00023 
(0.00007) 

** -0.00018 
(0.00015) 

   

PCP Supply 2010   0.01280 
(0.02087) 

 0.04786 
(0.01041) 

*** 

PCP Supply 2010 squared   -0.00006 
(0.00016) 

 -0.00023 
(0.00007) 

** 

Urbanicity: Large Non-Metroa 0.21268 
(0.37858) 

 0.19116 
(0.37864) 

 0.27669 
(0.38424) 

 

Urbanicity: Medium Non-Metro -1.72194 
(0.28412) 

*** -1.74524 
(0.28489) 

*** -1.77542 
(0.28993) 

*** 

Urbanicity: Small Non-Metro -8.05120 
(0.41176) 

*** -8.05955 
(0.41608) 

*** -8.18300 
(0.41911) 

*** 

Insurance 2013: % < 65 with insurance 0.01866  -0.03173    
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Predictors 

Low Birth Rate 
(O) 

Contemporaneous 
Model 

 
Low Birth Rate 
(O)  Distributed 

Lag Model 
 Low Birth Rate 

(O)  Lag Model 

 

(0.02335) (0.05808) 
Insurance 2010 % < 65 with insurance   0.04616 

(0.05067) 
 0.01775 

(0.02101) 
 

Median Household Income 2013 -0.00008 
(0.00002) 

*** -0.00007 
(0.00002) 

***   

Median Household Income 2010     -0.00006 
(0.00002) 

*** 

Population Age % aged >65 -0.15597 
(0.03014) 

*** -0.16945 
(0.03351) 

*** -0.14856 
(0.02854) 

*** 

Race % Black 0.12787 
(0.00978) 

*** 0.12743 
(0.0984) 

*** 0.13430 
(0.00965) 

*** 

Education % >25 with college -0.02826 
(0.02337) 

 -0.02956 
(0.02357) 

 -0.02323 
(0.01810) 

 

Obesity % >20 c BMI >=30 kg/m2 -0.02152 
(0.03411) 

 -0.01901 
(0.03415) 

 -0.01810 
(0.03384) 

 

Constant 10.57712 
(1.77482) 

*** 10.70706 
(1.77961) 

*** 9.66890 
(1.71574) 

*** 

R2 .16  .16  .15  
df_r 1452  1447  1454  
AIC 6162.04551  6166.62814  6184.46984  

a Reference group for Urbanicity is large metropolitan areas 
*p < .05, **p < .01, ***p < .001 
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Results for Hypothesis 2 – Infant Mortality Rate 

Hypothesis 2 tested the research question by assessing the relationship between RN to 

population ratio and infant mortality rates. The null and alternate hypotheses were: 

H2o: There is no relationship between RN to population ratio and infant mortality 

rates. 

H2a: Higher county-level RN to population ratios are related to lower infant mortality 

rates in that county. 

The results for Hypothesis 2 are shown in Table 11. There were 1,238 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 754.42 (df =11), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 794.00 (df =16), p < .001. The 

three-year lagged model, specification three, resulted in a likelihood ratio chi-square of 

758.94 (df =11), p < .001. According to AIC, the distributed lag model fits best, with a 

related AIC of 1756.13 (compared with 1785.72, and 1781.91 for the contemporaneous and 

three-year lagged models respectively).  

RN supply was not significantly associated with the dependent variable in any model 

specification.  Thus, the null hypothesis of no relationship between RN supply and infant 

mortality rates in a county was not rejected.  

PCP supply was significant in each model specification. In the contemporaneous 

model, PCP supply was positively related to the infant mortality rate in the county (β 

0.23960, p < .001), and PCP supply squared, was negatively related to the outcome variable 

(β -0.00105, p < .001).  In the three-year lagged model PCP supply was positively related to 

the outcome variable (β 0.24699, p < .001), and PCP supply squared was negatively related 

to the outcome variable (β -0.00102, p < .001).  In the distributed lag model with 2010 and 
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2013 values for PCP supply and the quadratic version, only the 2013 values were significant. 

PCP supply was positively related to the infant mortality rate (β 0.22070, p < .01); and PCP 

supply squared was negatively related (β -0.00050, p < .01). The resulting equation (equation 

8) is: 

 

 y = -0.00050 PCP supply squared + 0.22070 PCP supply + 3.14    (8) 

 

The x coordinate for the vertex (- (0.22070/2*-0.00050) = 220.7, which is not close to 0.  

These results indicate a positive relationship between PCP supply and infant mortality rate 

with increasingly negative slope, but could reach a maximum and become negative (opens 

downward, concave, left arm of parabola plus possibly the remainder of the parabola).  This 

relationship would require further additional data analysis to pinpoint the remainder of the 

parabola. 

Median household income was negatively related to infant mortality rate in two of the 

three model specifications: contemporaneous (β -0.00008, p < .05); distributed lag  

(β -0.00010, p < .001). Median household income from 2010 was not significant in the three-

year lagged model. 

Health insurance, defined in this study as percent of population under age 65 with 

insurance was negatively associated to infant mortality in the three-year lagged model  

(β -0.14551, p < .05).  However, in the distributed lagged model which included insurance 

variables for 2010 and 2013, the 2010 variable was negatively associated (β -0.78548, | 

p < .05), but the 2013 variable was positively associated (β 0.85332, p < .001). 

Population age was also negatively related to infant mortality rate in the three model 

specifications: contemporaneous (β -0.49272, p < .001); distributed lag (β -0.27044, p < .01); 

and three-year lagged (β -0.52231, p < .001). 
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Race was positively related to infant mortality rate in only two models: 

contemporaneous model (β 0.14410, p < .001); and three-year lagged (β 0.13890, p < .001). 

Race, defined in the study as percent of population identified as Black, was not significant in 

the distributed lag model.  

Obesity, defined in the study as percent of population aged over 20 with a self-

reported body mass index (BMI) greater than 30 kg/m2 was also negatively related to infant 

mortality rate in the three model specifications: contemporaneous (β -0.30693, p < .01); 

distributed lag (β -0.31575, p < .001); and three-year lagged (β -0.21416, p < .05). 

The predicted infant mortality rate in large non-metro areas were consistently 7.25-7.5 

times lower when compared to the reference group major metropolitan area in each model 

specification.  The results from medium and small non-metro groups were not significant.  
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Table 11 Summary of Tobit Regression Analyses Infant Mortality Rate  

Predictors 

Infant Mortality 
(O) 

Contemporaneous 
Model 

 
Infant Mortality 
(O) Distributed 

Lag Model 
 Infant Mortality 

(O) Lag Model 

 

 
β 

(SE) 
 β 

 (SE) 
 β 

 (SE)    
 

RN Supply 2013 0.00041 
(0.00067) 

 0.00275 
(0.00213) 

   

RN Supply 2013 squared -0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

   

RN Supply 2010   -0.00266 
(0.00224) 

 0.00020 
(0.00072) 

 

RN Supply 2010 squared   0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

 

PCP Supply 2013 0.23960 
(0.03022) 

*** 0.22070 
(0.07901) 

**   

PCP Supply 2013 squared -0.00105 
(0.00016) 

*** -0.00050 
(0.00000) 

**   

PCP Supply 2010   0.03260 
(0.07718) 

 0.24699 
(0.03052) 

*** 

PCP Supply 2010 squared   0.00037 
(0.00049) 

 -0.00102 
(0.00016) 

*** 

Urbanicity: Large Non-Metroa -7.56397 
(0.98591) 

*** -7.24924 
(0.94100) 

*** -7.56791 
(0.97900) 

*** 

Urbanicity: Medium Non-Metro -40.41586 
(--) 

 -46.09463 
(--) 

 -42.18869 
(--) 

 

Urbanicity: Small Non-Metro -35.68305 
(--) 

 -44.12596 
(--) 

 -36.21558 
(--) 
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Predictors 

Infant Mortality 
(O) 

Contemporaneous 
Model 

 
Infant Mortality 
(O) Distributed 

Lag Model 
 Infant Mortality 

(O) Lag Model 

 

Insurance 2013: % < 65 with 
insurance 

-0.00626 
(0.06926) 

 0.85332 
(0.17210) 

***   

Insurance 2010 % < 65 with 
insurance 

  -0.78548 
(0.14687) 

*** -0.14551 
(0.06116) 

* 

Median Household Income 2013 -0.00008 
(0.00004) 

* -0.00010 
(0.00004) 

**   

Median Household Income 2010     -0.00003 
(0.00004) 

 

Population Age % aged >65 -0.49272 
(0.09065) 

*** -0.27044 
(0.9574) 

** -0.52231 
(0.08170) 

*** 

Race %Black 0.14410 
(0.02535) 

*** 0.14969 
(0.02474) 

 0.13890 
(0.02497) 

*** 

Education % >25 with college -0.04497 
(0.05835) 

 -0.12169 
(0.05804) 

* -0.05289 
(0.05634) 

 

Obesity % >20 c BMI >=30 kg/m2 -0.30693 
(0.09547) 

** -0.31575 
(0.09310) 

*** -0.21416 
(0.09432) 

* 

_cons 10.21623 
(5.32912) 

 3.13986 
(5.36879) 

 14.69173 
(4.90970) 

** 

R2 .30  .32  .30  
df_r 1454  1449  1456  
AIC 1785.72174  1756.13651  1781.91306  
aReference group for Urbanicity is large metropolitan areas 
*p < .05, **p < .01, ***p < .001 
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Results for Hypothesis 3 – Total Mortality Rate 

Hypothesis 3 tested the research question by assessing the relationship between RN to 

population ratio and total mortality rates.  The null and alternate hypotheses were: 

H3o: There is no relationship between RN to population ratio and total mortality 

rates. 

H3a: Higher county-level RN to population ratios are related to lower total mortality 

rates in that county.  

The results for Hypothesis 3 are presented in table 12. There were 12 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 1555.27 (df =13), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 1571.81 (df =18), p < .001. The 

three-year lagged model, specification three, resulted in a likelihood ratio chi-square of 

1556.57 (df =13), p < .001. According to AIC, the distributed lag model fits best, with a 

related AIC of 19048.05 (compared with 19054.59, and 19084.68 for the contemporaneous 

and three-year lagged models respectively).  

RN supply was significantly associated with the total mortality in two of three 

models. In the distributed lag model with 2010 and 2013 values for RN supply and the 

quadratic version, none of the coefficients were significant.  In the contemporaneous model, 

RN supply was positively related to the total mortality (β 0.01113, p < .05), and the quadratic 

variable, RN supply squared, was negatively related to the outcome variable (β -0.00000, p < 

.05).  The resulting equation is shown in equation 9 below:  

 

y = -0.000001 RN supply squared + 0.01113 RN supply + 28.20     (9) 
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The x coordinate for the vertex (- (0.01113/2*-0.000001) = 5565. These results indicate a 

positive relationship between RN supply and total mortality rate with increasingly negative 

slope, but it could reach a maximum and become negative. Further analysis is required to 

explore this relationship 

Similarly, RN supply was positively related to the outcome variable in the three-year 

lagged model (β 0.01550, p < .001), and RN supply squared was negatively related to the 

outcome variable (β -0.00000, p < .001).  The resulting equation (equation 10) is:  

 

y = -0.000001 RN supply squared + 0.01550 RN supply + 74.35    (10) 

 

The x coordinate for the vertex (- (0.01550/2*-0.00001) = 7750. These results appear 

to indicate a positive relationship between RN supply and total mortality rate with 

increasingly negative slope, but it could reach a maximum and become negative. Further 

analysis is required to explore this relationship.  

Therefore, the null hypothesis that there would be no relationship between RN supply 

and total mortality rates in a county was rejected.  

PCP supply was not significant in the distributed lag model; however, the variable 

was significant in the other model specifications.  In the contemporaneous model PCP supply 

was positively related to total mortality rate in the county (β 1.85953, p < .001), and the 

quadratic variable, PCP supply squared, was negatively related to the outcome variable  

(β -0.00386, p < .01).  The resulting equation is shown in equation 11: 

 

 y = -0.00386 PCP supply squared + 1.85953 PCP supply + 28.22             (11) 
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The x coordinate for the vertex (- (1.85953/2*-0.00386) = 240.87, which is not close 

to 0.   

Similarly, PCP supply was positively related to the outcome variable in the three-year 

lagged model (β 2.03088, p < .001), and PCP supply squared was negatively related to the 

outcome variable (β -0.00411, p < .001). The resulting equation is shown in equation 12: 

 

 y = -0.00411 PCP supply squared + 2.03088 PCP supply + 74.35  (12) 

 

The x coordinate for the vertex (- (2.03088/2*-0.00411) = 247.07, which is not close 

to 0.   

These results indicate a positive relationship between PCP supply and total mortality 

rate with increasingly negative slope, but could reach a maximum and become negative 

(opens downward, concave, left arm of parabola plus possibly the rest of the parabola). 

Further analysis is required to explore this relationship.  

Median household income was negatively related to total mortality rate in the three 

model specifications: contemporaneous (β -0.00455, p < .001); distributed lag (β -0.00458, p 

< .001); and three-year lagged (β -0.00469, p < .001). 

Health insurance was positively associated to total mortality in each model: 

contemporaneous (β 3.96802, p < .001); distributed lag (β 6.27277, p < .001); and three-year 

lagged (β 3.06926, p < .001). 

Population age was positively related to total mortality in the three model 

specifications: contemporaneous (β 40.30617, p < .001); distributed lag (β 40.76323, p < 

.001); and three-year lagged (β 39.36743, p < .001). 

Education, defined for this study as percent of population aged over 25 with a college 

education, was negatively related to total mortality rate in each specification: 
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contemporaneous model (β -8.28599, p < .001); distributed lag (β -8.69864, p < .001); and 

three-year lagged (β -8.14308, p < .001). 

Obesity was positively related to total mortality in the three model specifications: 

contemporaneous (β 10.18570, p < .001); distributed lag (β 10.00327, p < .001); and three-

year lagged (β 10.62199, p < .001). 

The predicted total mortality rate in medium non-metro areas were consistently higher 

when compared to the reference group major metropolitan area in each model specification: 

contemporaneous model – 34 times higher; distributed lag model – 31 times higher; three-

year lagged model – 26 times higher.  The results from medium and large non-metro groups 

were not significant.
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Table 12 Summary of Tobit Regression Analyses Total Mortality Rate 

Predictors 
Total Deaths 

Contemporaneous 
Model 

 

Total 
Deaths 

Distributed 
Lag Model 

 Total Deaths 
Lag Model  

 
β 

(SE) 
 β 

 (SE) 
 β 

 (SE)    
 

RN Supply 2013 0.01113 
(0.00477) 

* -0.00453 
(0.01035) 

   

RN Supply 2013 squared -0.00000 
(0.00000) 

* 0.00000 
(0.00000) 

   

RN Supply 2010   0.01777 
(0.01024) 

 0.01550 
(0.00447) 

*** 

RN Supply 2010 squared   -0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

*** 

PCP Supply 2013 1.85953 
(0.27226) 

*** 1.16386 
(0.70474) 

   

PCP Supply 2013 squared -0.00386 
(0.00124) 

** -0.00566 
(0.00517) 

   

PCP Supply 2010   0.92190 
(0.68908) 

 2.03088 
(0.26936) 

*** 

PCP Supply 2010 squared   0.00137 
(0.00510) 

 -0.00411 
(0.00123) 

*** 

Urbanicity: Large Non-Metroa -3.87277 
(16.29628) 

 -6.53063 
(16.21694) 

 -9.11624 
(16.47183) 

 

Urbanicity: Medium Non-Metro 34.27659 
(11.97304) 

** 30.73379 
(11.94858) 

* 25.75498  
(12.16310) 

* 

Urbanicity: Small Non-Metro 26.11256 
(14.47055) 

 22.86915 
(14.60066) 

 13.00405 
(14.74185) 
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Predictors 
Total Deaths 

Contemporaneous 
Model 

 

Total 
Deaths 

Distributed 
Lag Model 

 Total Deaths 
Lag Model  

Insurance 2013: % < 65 with insurance 3.96802 
(0.93269) 

*** 6.27277 
(2.14622) 

**   

Insurance 2010 % < 65 with insurance   -2.32914 
(1.86664) 

 3.06926 
(0.83548) 

*** 

Median Household Income 2013 -0.00455 
(0.00064) 

*** -0.00458 
(0.00065) 

***   

Median Household Income 2010     -0.00469 
(0.00073) 

*** 

Population Age % aged >65 40.30617 
(1.20196) 

*** 40.76323 
(1.31080) 

*** 39.36743 
(1.13692) 

*** 

Race %Black 0.21375 
(0.41336) 

 0.30714 
(0.41324) 

 0.28076 
(0.40617) 

 

Education % >25 with college -8.28599 
(0.92559) 

*** -8.69864*** 
(0.92950) 

 -8.14308 
(0.91502) 

*** 

Obesity % >20 c BMI >=30 kg/m2 10.18570 
(1.38511) 

*** 10.00327 
(1.38150) 

*** 10.62199 
(1.36490) 

*** 

Constant 28.22615 
(70.87250) 

 27.08634 
(70.55095) 

 74.35160 
(68.80603) 

 

R2 .08  .08  .08  
df_r 1452  1447  1454  
AIC 19054.59144  19048.04942  19084.68015  

aReference group for Urbanicity is large metropolitan areas 
*p < .05, **p < .01, ***p < .001 .
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Results for Hypothesis 4 – Cerebrovascular Mortality Rates 

Hypothesis 4 tested the research question by assessing the relationship between RN to 

population ratio and cerebrovascular mortality rates.  The null and alternate hypotheses were: 

H4o: There is no relationship between RN to population ratio and the 

cerebrovascular mortality rates. 

H4a: Higher county-level RN to population ratios are related to lower rates of 

mortality due to cerebrovascular disease in that county. 

The results for hypothesis 4 are presented in table 13. There were 645 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 725.92 (df =13), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 731.48 (df =18), p < .001. The 

three-year lagged model, specification three, resulted in a likelihood ratio chi-square of 

718.04 (df =13), p < .001. According to AIC, the contemporaneous model fits best, with a 

related AIC of 9050.97 (compared to 9062.69 and 9055.42 for the distributed lag and three-

year lagged models respectively).  

RN supply was not significantly associated with the dependent variable in any model 

specification.  Thus, the null hypothesis of no relationship between RN supply and 

cerebrovascular mortality rates in a county was not rejected.   

PCP supply was not significant in the distributed lag model; however, the variable 

was significant in the other model specifications.  In the contemporaneous model PCP supply 

was positively related to cerebrovascular mortality rate in the county (β 0.54952, p < .001). 

However, the quadratic variable, PCP supply squared, was negatively related to the outcome 

variable (β -0.00249, p < .01).  The resulting equation (equation 13) is: 
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  y = -0.00249 PCP supply squared + 0.54952 PCP supply – 53.80              (13) 

 

The x coordinate for the vertex (- (0.54952/2*-0.00249) = 110.35, which is not close 

to 0. The y intercept, the constant in the equation, is negative.    

Similarly, PCP supply was positively related to the outcome variable in the three-year 

lagged model (β 0.60622, p < .001), and PCP supply squared was negatively related to the 

outcome variable (β -0.11348, p < .001). The resulting equation (equation 14) is: 

 

 y = -0.11348 PCP supply squared + 0.60622 PCP supply – 50.14             (14) 

 

The x coordinate for the vertex (- (0.60622/2*-0.11348) = 2.67, which is close to 0. 

The y intercept, the constant in the equation, is negative.    

These results indicate a positive relationship between PCP supply and cerebrovascular 

mortality rate with increasingly negative slope, but could reach a maximum and become 

negative. Further analysis is required to explore this relationship. 

Median household income was negatively related to cerebrovascular mortality rate in 

the three model specifications: contemporaneous (β -0.00065, p < .001); distributed lag  

(β -0.00065, p < .001); and three-year lagged (β -0.00045, p < .05). 

Health insurance was positively related to cerebrovascular mortality rate in two of the 

three models: contemporaneous (β 0.74200, p < .01); and three-year lagged (β 0.46609,  

p < .05). 

Population age was positively related to cerebrovascular mortality in the three model 

specifications: contemporaneous (β 1.88724, p < .001); distributed lag (β 1.99385, p < .001); 

and three-year lagged (β 1.73737, p < .001). 
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Race was positively related to total mortality rate in only two of the three models: 

contemporaneous model (β 0.49568, p < .001); and three-year lagged (β 0.52277, p < .001). 

The predicted cerebrovascular mortality rate in large non-metro areas were 

consistently about 12 times higher when compared to the reference group in each model.  

However, the predicted cerebrovascular mortality rate was lower in medium and small non-

metro areas (~19 times lower, and ~85 times lower respectively). 
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Table 13 Summary of Tobit Regression Analyses Cerebrovascular Mortality Rate 

Predictors 
CV Deaths 

Contemporaneous 
Model 

 
CV Deaths 
Distributed 
Lag Model 

 

CV 
Deaths 

Lag 
Model 

 

 
β 

(SE) 
 β 

 (SE) 
 β 

 (SE)    
 

RN Supply 2013 -0.00091 
(0.00150) 

 -0.00441 
(0.00334) 

   

RN Supply 2013 squared -0.00000 
(0.00000) 

 0.00000 
(0.00000) 

   

RN Supply 2010   0.00412 
(0.00325) 

 0.00016 
(0.00155) 

 

RN Supply 2010 squared   -0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

 

PCP Supply 2013 0.54952 
(0.11130) 

*** 0.26372 
(0.23002) 

   

PCP Supply 2013 squared -0.00249 
(0.00072) 

*** -0.00089 
(0.00163) 

   

PCP Supply 2010   0.33297 
(0.23486) 

 0.60622 
(0.11348) 

*** 

PCP Supply 2010 squared   -0.00187 
(0.00170) 

 -0.00285 
(0.00075) 

*** 

Urbanicity: Large Non-Metroa 11.89749 
(3.82244) 

** 11.63924 
(3.82219) 

** 12.06999 
(3.86816) 

* 

Urbanicity: Medium Non-Metro -19.08219 
(2.97591) 

*** -19.49680 
(2.98344) 

*** -19.86183 
(3.02577) 

*** 

Urbanicity: Small Non-Metro -85.18380 
(5.02938) 

*** -86.15969 
(5.10034) 

*** -86.33554 
(5.09933) 

*** 

Insurance 2013: % < 65 with insurance 0.74200 ** 1.10590    
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Predictors 
CV Deaths 

Contemporaneous 
Model 

 
CV Deaths 
Distributed 
Lag Model 

 

CV 
Deaths 

Lag 
Model 

 

(0.25457) (0.64013) 
Insurance 2010 % < 65 with insurance   -0.37800 

(0.55327) 
 0.46609 

(0.22625) 
* 

Median Household Income 2013 -0.00065 
(0.00017) 

*** -0.00065 
(0.00017) 

***   

Median Household Income 2010     -0.00045 
(0.00019) 

* 

Population Age % aged >65 1.88724 
(0.32532) 

*** 1.99385 
(0.36047) 

*** 1.73737 
(0.30428) 

*** 

Race %Black 0.49568 
(0.10239) 

*** 0.51222 
(0.10306) 

 0.52277 
(0.10077) 

*** 

Education % >25 with college 0.29199 
(0.24643) 

 0.22853 
(0.24854) 

 0.23777 
(0.24360) 

 

Obesity % >20 c BMI >=30 kg/m2 0.31098 
(0.36183) 

 0.29887 
(0.36240) 

 0.46940 
(0.35816) 

 

Constant -53.79449 
(19.33594) 

** -55.10116 
(19.41001) 

** -50.13616 
(18.49406) 

** 

R2 .08  .08  .07  
df_r 1452.00000  1447.00000  1454.00000  
AIC 9050.97487  9055.41684  9062.69399  

aReference group for Urbanicity is large metropolitan areas 
*p < .05, **p < .01, ***p < .001 .
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Results for Hypothesis 5 – Ischemic Heart Disease Mortality Rates 

Hypothesis 5 tested the research question by assessing the relationship between RN to 

population ratio and ischemic heart disease mortality rates.  The null and alternate hypotheses 

were: 

H5o: There is no relationship between RN to population supply ratio and the ischemic 

heart disease mortality rate. 

H5a: Higher county-level RN to population ratios are related to lower rates of 

mortality due to ischemic heart disease in that county. 

 

The results for Hypothesis 5 are presented in table 14. There were 225 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 582.72 (df =13), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 596.33 (df =18), p < .001. The 

three-year lagged model, specification three, resulted in a likelihood ratio chi-square of 

575.00 (df =13), p < .001. According to the Akaike information criterion (AIC), the 

distributed lag model fits best, with a related AIC of 14774.54 (compared to 14778.15 and 

14801.88 for the contemporaneous and three-year lagged model respectively).  

RN supply was significantly associated with ischemic heart disease mortality in one 

of the model specifications. In the distributed lag model, RN supply 2013 was negatively 

related to the outcome variable (β -0.01512, p < .05). The quadratic term, RN supply 2013 

squared, was positively related to the outcome variable (β 0.0000, p < .05).  The resulting 

equation is shown below in equation 15: 

 

  y = 0.00001 RN supply squared – 0.01512 RN supply – 116.85             (15) 
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The x coordinate for the vertex (- (-0.01512/2*-0.00001) = -756.  The y-intercept, the 

constant in the equation, is negative, - 116.85. Most of this parabola is below the positive y-

axis, therefore not part of the study.  The part of it in the positive x and y quadrant (feasible 

for the study) appears to be the left arm of the parabola, which means it has a positive 

relationship with an increasingly positive slope. Further analysis is required to explore this 

relationship. 

 The null hypothesis that there would be no relationship between RN supply and 

ishemic heart disease rates in a county was rejected.  

PCP supply was significant in each model specification.  In the contemporaneous 

model PCP supply was positively related to ischemic heart disease mortality rates in the 

county (β 1.02208, p < .001), and PCP supply squared, was negatively related to the outcome 

variable (β -0.00579, p < .001).  Similarly, PCP supply was positively related to the outcome 

variable in the three-year lagged model (β 0.96715, p < .01), and PCP supply squared was 

negatively related to the outcome variable (β -0.00496, p < .001). In the distributed lag model 

with 2010 and 2013 values for PCP supply and the quadratic version, only the 2013 values 

were significant.  PCP supply 2013 was positively related to ischemic heart disease mortality 

rates (β 1.02249, p < .01); and PCP supply squared was negatively related (β -0.00792,  

p < .01). The resulting equation is shown in equation 16: 

 

y = -0.00792 PCP supply squared + 1.02249 PCP supply – 116.85            (16) 

 

The x coordinate for the vertex (- (1.02249/2*-0.00792) = 64.55, which is not close to 

0.  The y-intercept is negative, - 116.85. These results indicate a positive relationship 

between PCP supply and ischemic heart disease mortality rate with an increasingly negative 
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slope, but could reach a maximum and become negative. Further analysis is required to 

explore this relationship. 

Median household income was negatively related to ischemic heart disease mortality 

rates in two model specifications: contemporaneous (β -0.00123, p < .001); and three-year 

lagged (β -0.00098, p < .01). 

Health insurance was positively related to ischemic heart disease mortality rates in 

two of the three models: contemporaneous (β 2.26608, p < .001); and three-year lagged  

(β 0.195483, p < .001). Population age was positively related to cerebrovascular mortality in 

the three model specifications: contemporaneous (β 7.48812, p < .001); distributed lag (β 

7.11470, p < .001); and three-year lagged (β 6.92068, p < .001). 

Education was negatively related to ischemic heart disease mortality rates in each 

specification: contemporaneous model (β -1.94507, p < .001); distributed lag (β -2.03095,  

p < .001); and three-year lagged (β -2.09916, p < .001). 

Obesity was positively related to ischemic heart disease mortality rates in the three 

model specifications: contemporaneous (β 1.84820, p < .01); distributed lag (β 1.89911,  

p < .01); and three-year lagged (β 2.06063, p < .05). 

The predicted ischemic heart disease mortality rates in small non-metro areas were 

consistently ~100 times lower when compared to the reference group major metropolitan area 

in each model specification.  In the other urbanicity classes, the difference was not 

significant. 
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  Table 14 Summary of Tobit Regression Analyses Ischemic Heart Disease Mortality Rate 

Predictors 
Ischemic Deaths 

Contemporaneous 
Model 

 

Ischemic 
Deaths 

Distributed Lag 
Model 

 
Ischemic 
Deaths  

Lag Model 

 

 
β 

(SE) 
 β 

 (SE) 
 β 

 (SE)    
 

RN Supply 2013 -0.00179 
(0.00237) 

 -0.01512 
(0.00587) 

*   

RN Supply 2013 squared -0.00000 
(0.00000) 

 0.00000 
(0.00000) 

*   

RN Supply 2010   0.01626 
(0.00701) 

* -0.00069 
(0.00222) 

 

RN Supply 2010 squared   -0.00000 
(0.00000) 

* -0.00000 
(0.00000) 

 

PCP Supply 2013 1.02208 
(0.18748) 

*** 1.02249 
(0.35361) 

**   

PCP Supply 2013 squared -0.00579 
(0.00129) 

*** -0.00792 
(0.00262) 

**   

PCP Supply 2010   0.00841 
(0.35778) 

 0.96715 
(0.18926) 

** 

PCP Supply 2010 squared   0.00245 
(0.00270) 

 -0.00496 
(0.00134) 

*** 

Urbanicity: Large Non-Metroa 1.36187 
(7.60218) 

 0.81190 
(7.58321) 

 1.67490 
(7.67878) 

 

Urbanicity: Medium Non-Metro 5.73503 
(5.60874) 

 4.63614 
(5.60982) 

 4.62152 
(5.69490) 

 

Urbanicity: Small Non-Metro -99.91976 
(7.10817) 

*** -99.70679 
(7.19035) 

*** -100.84316 
(7.23050) 

*** 

Insurance 2013: % < 65 with insurance 2.26608 *** 1.01706    
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Predictors 
Ischemic Deaths 

Contemporaneous 
Model 

 

Ischemic 
Deaths 

Distributed Lag 
Model 

 
Ischemic 
Deaths  

Lag Model 

 

(0.44826) (1.04680) 
Insurance 2010 % < 65 with insurance   1.11055 

(0.90459) 
 1.95483 

(0.39885) 
*** 

Median Household Income 2013 -0.00123 
(0.00031) 

*** -0.00108 
(0.00031) 

   

Median Household Income 2010   -- 
 
 -0.00098 

(0.00035) 
** 

Population Age % aged >65 7.48812 
(0.57633) 

*** 7.11470 
(0.63144) 

*** 6.92068 
(0.54317) 

*** 

Race %Black 0.00050 
(0.19395) 

 -0.00674 
(0.19453) 

 0.01400 
(0.19039) 

 

Education % >25 with college -1.94507 
(0.44575) 

*** -2.03095 
(0.44858) 

*** -2.09916 
(0.43995) 

*** 

Obesity % >20 c BMI >=30 kg/m2 1.84820 
(0.65615) 

** 1.89911 
(0.65574) 

** 2.06063 
(0.64644) 

** 

Constant -123.30567 
(34.05751) 

 -116.84647 
(34.06498) 

*** -111.61290 
(32.87297) 

 

R2 .04  .04  .04  
df_r 1452  1447  1454  
AIC 14778.14684  14774.53550  14801.87565  

aReference group for Urbanicity is large metropolitan areas 
*p < .05, **p < .01, ***p < .001 
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Results for Hypothesis 6 – Chronic Lower Respiratory Disease Mortality Rates 

Hypothesis 6 tested the research question by assessing the relationship between RN to 

population ratio and chronic lower respiratory disease mortality rates.  The null and alternate 

hypotheses were: 

H6o: There is no relationship between RN to population supply ratio and the chronic 

lower respiratory disease in a county. 

H6a: Higher county-level RN to population ratios are related to rates of chronic 

lower respiratory disease. 

The results for hypothesis 6 are presented in table 15. There were 541 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 635.70 (df =13), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 648.57 

 (df =18), p < .001. The three-year lagged model, specification three, resulted in a likelihood 

ratio chi-square of 616.56 (df =13), p < .001. According to the Akaike information criterion 

(AIC), the distributed lag model fits best, with a related AIC of 10506.50 (compared to 

10509.37 and 10533.19 for the contemporaneous and three-year lagged models respectively).  

RN supply was significantly associated with chronic lower respiratory disease 

mortality rates in one of the model specifications. In the distributed lag model, RN supply 

2013 was negatively related to the outcome variable (β -0.01013, p < .01). The quadratic 

term, RN supply 2013 squared, was positively related to the outcome variable (β 0.0000, p < 

.05).  The resulting equation is shown in equation 17: 

 

y = 0.000001 RN supply squared – 0.01013 RN supply + 8.49             (17) 
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The x coordinate for the vertex (- (-0.01013/2*-0.000001) = -5065, which is not at all 

close to 0.  These results indicate a positive relationship between RN supply and chronic 

lower respiratory disease mortality rates with an increasingly negative slope, but could reach 

a maximum and become negative. Further analysis is required to explore this relationship. 

The null hypothesis that there would be no relationship between RN supply and chronic 

lower respiratory disease mortality rates in a county was rejected.  

PCP supply was not significant in the distributed lag model; however, the variable 

was significant in the other model specifications.  In the contemporaneous model PCP supply 

was positively related to chronic lower respiratory disease mortality rates (β 0.67534, p < 

.001), and the quadratic variable, PCP supply squared, was negatively related to the outcome 

variable (β -0.00337, p < .001).  The resulting equation is shown in equation 18: 

 

y = -0.00337 PCP supply squared + 0.67534 PCP supply + 4.50             (18) 

 

The x coordinate for the vertex (- (0.67534/2*-0.00337) = 100.20, which is not close 

to zero. These results indicate a positive relationship between PCP supply and ischemic heart 

disease mortality rate with an increasingly negative slope, but could reach a maximum and 

become negative. Further analysis is required to explore this relationship. 

Similarly, PCP supply was positively related to the outcome variable in the three-year 

lagged model (β 0.67731, p < .001), and PCP supply squared was negatively related to the 

outcome variable (β -0.00370, p < .001). The resulting equation (equation 19) is: 

 

y = -0.00370 PCP supply squared + 0.67731 PCP supply – 9.38             (19) 
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The x coordinate for the vertex (- (0.67731/2*-0.00370) = 91.53, which is not close to 

0.  The y-intercept is negative, - 9.38.  

These results indicate a positive relationship between PCP supply and ischemic heart 

disease mortality rate with an increasingly negative slope, but could reach a maximum and 

become negative. Further analysis is required to explore this relationship. 

Median household income was negatively related to chronic lower respiratory disease 

mortality rates in all models: contemporaneous (β -0.00120, p < .001); distributed lag ((β -

0.000108, p < .001) and three-year lagged (β -0.00104, p < .001). 

Health insurance was positively related to chronic lower respiratory disease mortality 

rate in two of the three models: contemporaneous (β 0.60088, p < .001); and three-year 

lagged (β 0.65836, p < .05). 

Population age was positively related to chronic lower respiratory disease mortality 

rate in the three model specifications: contemporaneous (β 2.50680, p < .001); distributed lag 

(β 2.15909, p < .001); and three-year lagged (β 2.53327, p < .001). 

Education was only negatively related chronic lower respiratory disease mortality rate 

in the three-year lagged model (β -0.62447, p < .05). 

The predicted chronic lower respiratory disease mortality rate in small non-metro 

areas were consistently lower when compared to the reference group major metropolitan area 

in each model specification: contemporaneous model – 103 times; distributed lag model – 

103 times; three-year lagged model – 105 times.  In medium non-metro areas, the predicted 

chronic lower respiratory disease mortality rate was lower than the reference group of large 

metropolitan areas in only the contemporaneous and distributed lag model (28.8 times lower, 

and 29 times lower respectively). 
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Table 15 Summary of Tobit Regression Analyses Chronic Lower Respiratory Disease (CLRD) Mortality Rate 

Predictors 
CLRD Death s 

Contemporaneous 
Model 

 
CLRD Deaths 

Distributed Lag 
Model 

 
CLRD 

Deaths Lag 
Model 

 

 
β 

(SE) 
 β 

(SE) 
 β 

(SE) 
 

RN Supply 2013 -0.00223 
(0.00162) 

 -0.01013 
(0.00369) 

**   

RN Supply 2013 squared 0.00000 
(0.00000) 

 0.00000 
(0.00000) 

*   

RN Supply 2010   0.00907 
(0.00401) 

* 0.00000 
(0.00159) 

 

RN Supply 2010 squared   -0.00000 
(0.00000) 

 -0.00000 
(0.00000) 

 

PCP Supply 2013 0.67534 
(0.13062) 

*** 0.48850 
(0.25788) 

   

PCP Supply 2013 squared -0.00337 
(0.00087) 

*** -0.00152 
(0.00188) 

   

PCP Supply 2010   0.23153 
(0.26169) 

 0.67731 
(0.13242) 

*** 

PCP Supply 2010 squared   -0.00225 
(0.00195) 

 -0.00370 
(0.00091) 

*** 

Urbanicity: Large Non-Metroa 2.07118 
(4.74202) 

 1.83292 
(4.72848) 

 2.90713 
(4.81738) 

 

Urbanicity: Medium Non-Metro -28.83775 
(3.63338) 

*** -29.08075 
(3.62946) 

*** -29.35774 
(3.70894) 

 

Urbanicity: Small Non-Metro -103.28203 
(5.35891) 

*** -102.71942 
(5.39698) 

*** -105.32570 
(5.46518) 

*** 

Insurance 2013: % < 65 with insurance 0.60088 
(0.30125) 

* -0.84033 
(0.75745) 

   

Insurance 2010 % < 65 with insurance   1.32277 * 0.65836 * 
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Predictors 
CLRD Death s 

Contemporaneous 
Model 

 
CLRD Deaths 

Distributed Lag 
Model 

 
CLRD 

Deaths Lag 
Model 

 

(0.65858) (0.26956) 
Median Household Income 2013 -0.00120 

(0.00020) 
*** -0.00108 

(0.00021) 
***   

Median Household Income 2010     -0.00104 
(0.00023) 

*** 

Population Age % aged >65 2.50680 
(0.38638) 

*** 2.15909 
(0.42655) 

*** 2.53327 
 (0.36465) 

*** 

Race %Black -0.20494 
(0.12568) 

 -0.22761 
(0.12601) 

 -0.11363 
(0.12410) 

 

Education % >25 with college -0.54563 
(0.29689) 

 -0.51359 
(0.29892) 

 -0.62447 
(0.29427) 

* 

Obesity % >20 c BMI >=30 kg/m2 0.59780 
(0.43242) 

 0.68566 
(0.43203) 

 0.58196 
(0.42905) 

 

Constant 4.49568 
(22.91102) 

 8.48789 
(22.91069) 

 -9.37690 
(22.19070) 

 

R2 .06  .06  .06  
df_r 1452  1447  1454  
AIC 10509.36571  10506.49871  10533.19445  

aReference group for Urbanicity is large metropolitan areas 
 *p < .05, **p < .01, ***p < .001
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Results for Hypothesis 7 – Other Cardiovascular Disease Mortality Rates 

Hypothesis 7 tested the research question by assessing the relationship between RN to 

population ratio and mortality rates from other cardiovascular disease in a county. The 

corresponding hypotheses were: 

H7o: There is no relationship between RN to population supply ratio and the other 

cardiovascular disease mortality rate in a county. 

H7a: Higher county-level RN to population ratios are related to other cardiovascular 

disease mortality rate. 

The results for hypothesis 7 are presented in table 16. There were 323 left-censored 

observations in these models. The contemporaneous model, specification one, produced a 

likelihood ratio chi-square of 585.29 (df =13), p < .001.  The distributed lag model, 

specification two, produced a likelihood ratio chi-square of 616.01 (df =18), p < .001. The 

three-year lagged model, specification three, resulted in a likelihood ratio chi-square of 

594.64 (df =13), p < .001. According to AIC, the distributed lag model contemporaneous 

model fits best, with a related AIC of 13371.13 (compared to 13391.85 and 13390.07 for the 

contemporaneous and three-year lagged models respectively).  

RN supply was significantly associated with other cardiovascular disease mortality 

rates in one of the model specifications. In the distributed lag model, RN supply 2013 was 

negatively related to the outcome variable (β -0.01870, p < .01). The quadratic term, RN 

supply 2013 squared, was positively related to the outcome variable (β 0.0000), and was not 

significant.  The resulting equation is shown in equation 20: 

 

y = 0.000001 RN supply squared – 0.01870 RN supply – 90.33            (20) 
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The x coordinate for the vertex (- (-0.01870/2*-0.000001) = 9350, which is not close 

to 0.  The y-intercept is negative, - 90.33. These results indicate a positive relationship 

between RN supply and other cardiovascular disease mortality rate with an increasingly 

positive slope, but could reach a maximum and become negative. Further analysis is required 

to explore this relationship.  

Also in the distributed lag model, RN supply 2010 was positively related to the 

outcome variable (β 0.01970, p < .01), and the quadratic term, RN supply 2010 squared, was 

negatively related to the outcome variable (β -0.0000, p < .05).  The resulting equation is 

shown in equation 21: 

 

y = -0.000001 RN supply squared + 0.01970 RN supply – 90.33             (21) 

 

The x coordinate for the vertex -0.01970/2*-0.000001) = 9850, which is not close to 

0.  The y-intercept, the constant in the equation, is negative, - 90.33. Most of this parabola is 

below the positive y-axis, therefore not part of the study. The part of it in the positive x and y 

quadrant (feasible for the study) appears to be the left arm of the parabola, which means it 

has a positive relationship with an increasingly negative slope. Further analysis is required to 

explore this relationship. 

 The null hypothesis that there would be no relationship between RN supply and other 

cardiovascular disease mortality rates in a county was rejected.  

PCP supply was not significant in the distributed lag model; however, the variable 

was significant in the other model specifications.  In the contemporaneous model PCP supply 

was positively related to other cardiovascular disease mortality rates (β 0.57554, p < .001), 

and the quadratic variable, PCP supply squared, was negatively related to the outcome 

variable (β -0.00313, p < .01). The resulting equation is shown in equation 22; 
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y = -0.00313 PCP supply squared + 0.57554 PCP supply – 102.48  (22) 

 

The x coordinate for the vertex (- (0.57554/2*-0.00313) = 91.94, which is not close to 

zero.  The y-intercept is negative, - 102.48. 

PCP supply was positively related to the outcome variable in the three-year lagged 

model (β 0.65979, p < .001), and PCP supply squared was also positively related to the 

outcome variable (β 0.00380, p < .01). The resulting equation is shown in equation 23: 

 

y = -0.00380 PCP supply squared + 0.65979 PCP supply – 121.58   (23) 

 

The x coordinate for the vertex (- (0.65979/2*-0.00380) = 86.81, which is not close to 

zero. The y-intercept is negative, - 121.58 

These results indicate a positive relationship between PCP supply and other 

cardiovascular disease mortality rate with an increasingly negative slope, but could reach a 

maximum and become negative. Further analysis is required to explore this relationship. 

Median household income was negatively related to other cardiovascular disease 

mortality rates in all models: contemporaneous (β -0.00113 p < .001); distributed lag  

(β -0.00084, p < .01) and three-year lagged (β -0.00081, p < .01). 

In the contemporaneous model the three-year lagged model, health insurance was 

positively related to other cardiovascular disease mortality rates (β 1.80208 p < .001 and  

β 1.90124 p < .001 respectively).  In the distributed lag model which included insurance 

variables for 2010 and 2013, the 2010 variable was negatively associated (β -1.92413,  

p < .05), but the 2013 variable was positively associated (β 3.43529, p < .001).  
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Population age was positively related to other cardiovascular disease mortality rates in 

the three model specifications: contemporaneous (β 4.96130, p < .001); distributed lag (β 

3.99195, p < .001); and three-year lagged (β 4.66169, p < .001). 

Race was consistently positively related to other cardiovascular disease mortality 

rates in each specification: contemporaneous model (β 1.12959, p < .001); distributed lag (β 

1.06849, p < .001); and three-year lagged (β 1.21353, p < .001). 

Education was only negatively related to other cardiovascular disease mortality rates 

in the three-year lagged model (β -0.89933, p < .05). 

Obesity was positively related other cardiovascular disease mortality rates in the three 

model specifications: contemporaneous (β 1.39849, p < .05); distributed lag (β 1.58470,  

p < .01); and three-year lagged (β 1.37989, p < .05). 

The predicted other cardiovascular disease mortality rates in small non-metro areas 

were consistently lower when compared to the reference group major metropolitan area in 

each model specification: contemporaneous model – 97 times; distributed lag model – 94 

times; three-year lagged model – 96 times.   
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  Table 16 Summary of Tobit Regression Analyses Other Cardiovascular Disease Mortality Rates 

Predictors 
CV Deaths 

Contemporaneous 
Model 

 
CV Deaths 
Distributed 
Lag Model 

 CV Deaths 
Lag Model 

 

 
β 

(SE) 
 β 

 (SE) 
 β 

 (SE)    
 

RN Supply 2013 
 

-0.00323 
(0.00210) 

 -0.01870 
(0.00579) 

**   

RN Supply 2013 squared 0.00000 
(0.00000) 

 0.00000 
(0.00000) 

   

RN Supply 2010   0.01970 
(0.00713) 

** 0.00013 
(0.00212) 

 

RN Supply 2010 squared   -0.00000 
(0.00000) 

* -0.00000 
(0.00000) 

 

PCP Supply 2013 0.57554 
(0.16541) 

*** 0.25543 
(0.31533) 

   

PCP Supply 2013 squared -0.00313 
(0.00113) 

** -0.00102 
(0.00232) 

   

PCP Supply 2010   0.40525 
(0.32001) 

 0.65979 
(0.16656) 

*** 

PCP Supply 2010 squared   0.40525 
(0.32001) 

 0.00380 
(0.00117) 

** 

Urbanicity: Large Non-Metroa -0.28549 
(6.52745) 

 -0.84961 
(6.47581) 

 0.63147 
(6.56477) 

 

Urbanicity: Medium Non-Metro -3.25146 
(4.84751) 

 -3.80688 
(4.82063) 

 -3.38060 
(4.90048) 

 

Urbanicity: Small Non-Metro -97.02058 
(6.39844) 

*** -94.35355 
(6.41554) 

*** -96.05575 
(6.47267) 

*** 

Insurance 2013: % < 65 with insurance 1.80208 
(0.39344) 

*** -1.92413 
(0.95530) 

*   
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Predictors 
CV Deaths 

Contemporaneous 
Model 

 
CV Deaths 
Distributed 
Lag Model 

 CV Deaths 
Lag Model 

 

Insurance 2010 % < 65 with insurance   3.43529 
(0.83244) 

*** 1.90124 
(0.35060) 

*** 

Median Household Income 2013 -0.00113 
(0.00027) 

*** -0.00084 
(0.00027) 

**   

Median Household Income 2010     -0.00081 
(0.00030) 

** 

Population Age % aged >65 4.96130 
(0.50695) 

*** 3.99195 
(0.55365) 

*** 4.66169 
(0.47621) 

*** 

Race %Black 1.12959 
 (0.16719) 

*** 1.06849 
(0.16695) 

*** 1.21353 
(0.16352) 

*** 

Education % >25 with college -0.69173 
(0.39008) 

 -0.62723 
(0.39118) 

 -0.89933 
(0.38366) 

* 

Obesity % >20 c BMI >=30 kg/m2 1.39849 
(0.57235) 

* 1.58470 
(0.56886) 

** 1.37989 
(0.56202) 

* 

Constant -102.47709 
(29.88010) 

*** -90.33109 
(29.77390) 

** -121.58182 
(28.75468) 

*** 

R2 .04  .04  .04  
df_r 1452  1447  1454  
AIC 13391.85377  13371.13320  13390.06647  

aReference group for Urbanicity is large metropolitan areas 
*p < .05, **p < .01, ***p < .001 
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Chapter Summary 

This chapter presented the results of the statistical analyses to support this research. The 

analyses show mixed results.  The alternative hypotheses could be rejected for three of the seven 

hypotheses since there was no association to RN supply in any of the three associated model 

specifications. However, we can conclude that RN supply shows a positive relationship to total 

mortality rates, ischemic heart disease mortality rates, chronic lower respiratory disease mortality 

and other cardiovascular disease mortality.  Chapter 5 discusses these findings and the 

implications for policy and research.  
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CHAPTER FIVE: CONCLUSION 

The purpose of this research study was to examine the effect of RN supply on selected 

population health outcome measures. This is a retrospective, cross-sectional study of U.S. 

counties and county-equivalents using national data. Seven population health outcomes (total and 

disease specific mortalities and low infant birth-weight rate) were the response variables.  RN 

supply was the predictor variable. The predictor variable, RN supply, and certain control 

variables were thought to have an asynchronous effect on the seven outcome variables in the 

hypothesized relationship. Therefore, these variables were examined using three different 

models: contemporaneous; a three-year lagged; and a distributed lag (both contemporaneous and 

lagged variables).  Quadratic terms for RN and physician supply variables were included. 

Because the AHRF outcome variables were skewed toward zero and left censored, Tobit 

regression analyses were used.  

The results of the data analyses were presented in Chapter Four. These analyses included 

descriptive statistics, and twenty-one Tobit regression models (three for every hypothesis) in the 

three model specifications. This chapter presents a discussion of the results for testing each 

hypothesis, a discussion of how the results collectively inform the research question, and the 

strengths and limitations of this study.  Finally, this chapter includes the policy implications and 

recommendations for future research in this area.  
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Hypothesis Testing Results 

 In this section, an analysis of the statistical results for the seven hypotheses that inform 

the research question follows.  

Hypothesis 1 - Higher county-level RN to population ratios are related to lower rates of 

low birth weight infants in that county. 

The analyses did not support this hypothesis in any model specification.  The null hypothesis 

was not rejected. 

Hypothesis 2 - Higher county-level RN to population ratios are related to lower infant 

mortality rates in that county. 

The analyses did not support this hypothesis in any model specification.  The null hypothesis 

was not rejected. 

The results for Hypotheses 1 and 2 were unexpected given RNs’ role in patient education and 

prenatal care and the  negative association found in previous studies between low birth-weight 

infants and PCP supply (Macinko, Starfield, & Shi, 2007; Shi et al., 2004).  Attempting to 

explain the difference in relationship to low birth weight infants between PCP supply and RN 

supply is only conjecture. Further research is needed. 

Hypothesis 3 - Higher county-level RN to population ratios are related to lower total 

mortality rates in that county. 

 The analyses revealed a strong relationship between RN supply and total mortality rates. 

The same relationship was consistently observed in two of the three models examined: the 
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contemporaneous model, and the three-year lagged model.  A curvilinear relationship was 

identified. The direction of the relationship suggests that the total mortality rate in the county 

increases as RN supply increases, but that the positive relationship increasingly becomes less so 

and transitions to a negative relationship.   

 The results suggest there is an underlying relationship although the direction of the 

relationship is unexpected.  It is possible that the relationship between RN supply and total 

mortality is dependent on the effects of a variable not part of this study (more later).  It is also 

possible that RN supply has a different effect on some causes of mortality than on others  

(Bigbee, 2008).  Further research, including moderation analysis, is needed.  

Hypothesis 4 - Higher county-level RN to population ratios are related to lower rates of 

mortality due to cerebrovascular disease in that county. 

The analyses did not support this hypothesis in any model specification.  The null hypothesis 

was not rejected. 

Hypothesis 5 - Higher county-level RN to population ratios are related to lower rates of 

mortality due to ischemic heart disease in that county. 

 The analyses revealed a relationship between RN supply and ischemic heart disease 

mortality rates in the distributed lag model. A curvilinear relationship was identified. The 

direction of the relationship suggests that the ischemic heart disease mortality rate in the county 

increases as RN supply increases, and the positive relationship becomes increasingly more 

positive. These results suggest there is an underlying relationship even though the direction and 

strength of the relationship is unexpected.  It is possible the relationship between RN supply and 

ischemic heart disease mortality is dependent on the effects of a variable not included in this 
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study.  For example, prior research  established an association between air quality and ischemic 

heart disease mortality for which urbanicity may not have provided an adequate control 

(Thurston et al., 2016).  Alternatively, the role of suboptimal diets in ischemic heart disease 

incidence and mortality might not have been controlled by income, race, obesity, or urbanicity 

(Micha et al., 2017).  These data did not provide enough information and attempting to explain 

this relationship without further analysis is only speculation. Further research, including 

moderation analysis, is needed.  

Hypothesis 6 - Higher county-level RN to population ratios are related to lower rates of 

mortality due to chronic lower respiratory disease in that county. 

The analyses revealed a relationship between RN supply and chronic lower respiratory 

disease mortality rates in the distributed lag model. A curvilinear relationship was identified. The 

direction of the relationship suggests that the mortality rate due to chronic lower respiratory 

disease in the county increases as RN supply increases, but that the positive relationship 

increasingly becomes less so and transitions to a negative relationship. The results suggest an 

underlying relationship even though the direction of that relationship is unexpected.  It is 

possible that the relationship between RN supply and mortality due to chronic lower respiratory 

disease is dependent on the effects of a variable not included in this study. For example, a wealth 

of literature documents the association between air quality and chronic lower respiratory disease 

(Chen et al., 2008; Cohen et al., 2017; Hao et al., 2015)  It is possible that the controls of 

urbanicity, income, age, and race  proved  inadequate to control for health behaviors or the effect 

of place in these models. These data did not provide enough information and attempting to 

explain this relationship without further analysis is only speculation. Further research, including 

moderation analysis, is needed.  
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Hypothesis 7 - Higher county-level RN to population ratios are related to lower rates of 

mortality due to other cardiovascular disease in that county.  

The analyses revealed a relationship between RN supply and other cardiovascular disease 

mortality in the distributed lag model. A curvilinear relationship was identified. The direction of 

the relationship suggests that the mortality rate due to other cardiovascular disease in the county 

increases as RN supply increases, but that the positive relationship increasingly becomes less so 

and transitions to a negative relationship.  The results suggest an underlying relationship 

although its direction is unexpected.  It is possible the relationship between RN supply and other 

cardiovascular disease mortality is dependent on the effects of a variable not included in this 

study. Obesity was included as a control for other chronic diseases and lifestyle factors and is a 

known risk factor (Hubert, Feinleib, McNamara, & Castelli, 1983; Micha et al., 2017).  

However, these data were self-reported and thus obesity may be underreported.  Further analysis 

is required to explore this relationship. 

RN Supply  

In summary, there were mixed results for the effect of RN supply on the selected health 

outcomes.  Greater RN supply was significantly (positively) related to higher mortality due to 

ischemic heart disease, other cardiovascular disease, and chronic lower respiratory disease in the 

distributed lag model. Higher RN supply was not significantly related to rates of low infant birth 

weight, infant mortality, or mortality from cerebrovascular disease in any model. Higher RN 

supply was positively related to total deaths in the contemporaneous and lagged models. 

The significant results showing that greater RN supply was positively related to negative 

population outcomes, is counter-intuitive. It is possible that despite the role RNs play in patient 
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education and care, their effectiveness is largely connected with their institutional roles. Thus, 

the hypothesized effect of RN supply on population health outcomes might be observed in a 

compound measure of outcomes that are amenable to healthcare, or outcomes that are RN 

sensitive (Gianino et al., 2017; Schoenbaum, Schoen, Nicholson, & Cantor, 2011). The results 

may be due partly to including all RNs as the predictor variable and the specific population 

health outcomes that were selected.  

 One counterargument for these findings is that RN supply and PCP supply are strongly 

correlated, and therefore the results are biased.  While it would be logical to make this 

assumption given that similar factors influence RN and PCP location, analysis of these data 

found almost no correlation between them. 

The choice of APRNs might be more appropriate for the population health measures 

chosen. Increasingly, APRNs practice at the top of their licenses and serve as independent 

primary care providers (Gutchell, Idzik, & Lazear, 2014; Oliver, Pennington, Revelle, & Rantz, 

2014; Romanowski, 2015). Also, APRNs are significantly more likely to increase access to 

primary care (Neff et al., 2018). Thus, this subset of RNs is more likely to be involved in direct 

patient care. Research using only APRNs and other population health outcomes is needed.  

At the outset, this study deliberately avoided gender-specific (e.g. breast health 

screenings, pre-natal care) or subjective health outcome measures (self-reported health status) to 

compensate for the limitations in extant literature.  However, the technical outcomes selected 

from the AHRF are now left-censored which potentially introduced bias.  This limitation is 

discussed later. It is possible that objective measures for population health outcomes are 

inadequate to support research in this area. 
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The hypothesized relationship may have been observed more clearly in a population health 

outcome measure that combined population level as well as individual risk or captured the role 

of RNs in patient education as shown by the reduction of individual health risk. Cardiovascular 

health risk index (CVHI) is one potential measure.  CVHI is a composite measure developed by 

the American Heart Association that was conceived by combining individual and population 

level concepts of disease prevention (Lloyd-Jones et al., 2010; Pilkerton, Singh, Bias, & Frisbee, 

2017). CVHI proffers an amalgam of evidenced based biological measures (cholesterol, blood 

pressure and glucose, as well as body mass index) and health behaviors (smoking, diet, and 

exercise) to score cardiovascular health.  However, this is the challenge that Susser’s eco-

epidemiology theory which guided this study served as an effective guard: a heightened 

awareness that all determinants in the model have  relationships to other factors; and that 

inferences about the population must be made from population comparisons (Diez-Roux, 1998; 

March & Susser, 2006; Mervyn Susser, 1973; Mervyn Susser & Susser, 1996).  

Another relationship is endogeneity affecting RN supply. The social and economic 

environment that influence healthcare facility location and demand for healthcare providers, also 

influence RN and PCP supply in that geographic area. The statistical association of interest here 

was the relationship between RN supply and population health, which is affected by health 

facility location and demand for RNs and PCPs. Healthcare facility location and demand for RNs 

is, in turn, affected by RN supply. These endogenous loops present analytical challenges to 

isolating the statistical association of interest, and determining the strength and/or direction of  

relationships (Mark, 2006; Phillips et al., 1998; Zhang et al., 2014). In this study, urbanicity was 

a proxy for this endogenous relationship.  
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Although the study controlled for PCPs – and those results are discussed in the next section – 

physician assistants were not included, which could have biased the results.  Physician assistants, 

like APRNs, are part of a typical primary care team and have a similar role in treatment and 

patient education (Bodenheimer & Pham, 2010; Chang, O’Malley, & Goodman, 2017; Cooper, 

2015; Davis, Guo, Titler, & Friese, 2017; Henry & Lisa, 2015; Intrator et al., 2005). Also, the 

counts of RNs could potentially overestimate the number of nurses. This limitation is discussed 

subsequently. 

 Control Variable Results 

A discussion of the results from the analysis for the control variables included in the study is 

presented in the sections that follow: 

PCP Supply 

PCP supply (primary care physician supply) consistently demonstrated a strong positive 

relationship with each of the seven health outcome measures selected for the study. The result is  

inconsistent with previous research that finds a negative relationship  (Macinko et al., 2007; Shi 

et al., 2004; Shi et al., 2005; Shi, Macinko, Starfield, Xu, & Politzer, 2003).  However, a later 

study found a pattern of geographic variation and a mixed result (Ricketts & Holmes, 2007).  

These researchers (Ricketts and Holmes) also found a positive relationship between PCP supply 

and health outcomes, but concentrated in southern states.  Their finding is consistent with these 

data where 11 of the 19 states included in the study were in the South.  

 Similar counterarguments could be made for PCP supply as discussed above for RN 

supply. One theoretical explanation was that PCP supply was highly correlated with RN supply.  

However, empirical analysis found almost no correlation between these variables.  The 



 121 

dependency of PCP supply on health facility location and the endogeneity that results, is the 

same as for RN supply. Isolating the individual effects of PCP supply and RN supply may only 

become more challenging in the future as the scope of practice debate continues.  Reconsidering 

healthcare supply as a composite measure of healthcare workforce supply and health facility 

concentration is one potential solution. Another is structural equation modelling.  The latter is 

discussed later.  

Education and Income 

Higher median household income was negatively associated with all seven health outcome 

measures. However, higher education (measured as per cent of the population over age 25 with 

four years of college) was associated with lower infant, total, ischemic heart disease, chronic 

lower respiratory, and other cardiovascular disease mortality.  College education was not 

significant for the rate of low infant birth-weight and cerebrovascular disease mortality. 

Nonetheless, this confirms the role of these socio-demographic indicators in health outcomes as 

proxies for health literacy, health behavior, and access to healthcare. 

Age 

In keeping with the ambiguity of the role of age in health outcome research, the effect of age 

in the hypotheses was mixed—as predicted—and also varied by dependent variable measure. 

Maternal health outcomes, low infant birth weight and infant mortality were negatively 

associated with age (measured here as per cent of population age 65 and older). This is logical, 

and suggests that this definition of age is not appropriate for maternal health outcomes, since it 

excludes women of childbearing age. Conversely, total and four disease specific mortalities 
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(cerebrovascular, ischemic heart disease, chronic lower respiratory disease, and other 

cardiovascular disease) were positively associated with population age 65 and older.  

Race 

Race, measured in the study as the percent of Black/African American population, was 

significant in four of the seven outcome measures: populations with a higher percentage of 

Blacks/African Americans had higher rates of low infant birth weight, and higher rates of infant 

mortality, cerebrovascular mortality, and other cardiovascular disease mortality. There is 

evidence of a positive relationship between race and infant mortality rates, and between race and 

rates of low infant birth weight in the literature (Shi et al., 2004).  This has been attributed to 

lower utilization rates for prenatal care and the quality of care available even when income and 

insurance coverage are controlled.  The  literature confirms race as an important factor in health 

outcomes and for a predisposition to chronic conditions (Braveman, Cubbin, Egerter, Williams, 

& Pamuk, 2010; Buys et al., 2015; Geronimus et al., 2006; LaVeist, 2005; Ramaswamy & Kelly, 

2015; Thorpe et al., 2012; Wallace et al., 2013).  

Insurance Coverage 

Insurance coverage, measured as per cent of the population in the county under age 65 with 

health insurance, was consistently positively related to six of the seven health outcomes.  The 

relationship was not significant, however, for rates of low infant birth weights. This is expected, 

given the wide availability of coverage for maternity care and childbirth from the Children’s 

Health Insurance Program and Medicaid. But, insurance coverage was negatively associated with 

infant mortality rates, which is perplexing when compared with the results for low infant birth 

weight. This suggests the presence of factors not discerned by this study.  
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Similarly, insurance coverage was positively related to total mortality, cerebrovascular 

mortality, ischemic heart disease mortality, chronic lower respiratory heart disease mortality, and 

other cardiovascular disease mortality. Insurance coverage was included to account for access to  

healthcare for treatment of chronic illness and preventive measures (Thorpe et al., 2012). Extant 

research shows that higher rates of insurance coverage result in higher use rates of healthcare 

services (Kullgren et al., 2012).  The positive relationship between higher rates of insurance 

coverage and higher mortality rates suggests a corollary: greater utilization of health care causes 

worse health outcomes.  This is counterintuitive. Another explanation is that worse health 

outcomes are an artefact of the quality or the availability of care in non-metropolitan areas. Yet 

another explanation is that insurance coverage alone does not surmount other healthcare access 

challenges such as convenient hours, transportation, or time off from work. Moderation analysis 

is required to examine this relationship.   

Obesity 

Obesity was  a control variable— a  proxy for poor health behaviors,  which are  associated 

with  the chronic illnesses  studied here, e.g., cerebrovascular, cardiovascular, and ischemic heart 

disease, and multiple co-morbidities (Guh et al., 2009; Patterson et al., 2004; Yang et al., 2015).  

However, the results of this study are mixed.  Obesity, measured as a self-reported BMI greater 

than 30kg/m2, was not significantly related to low infant birth weight, cerebrovascular disease, or 

chronic lower respiratory disease mortality.  It was negatively associated with infant mortality, 

but consistent with prior research, it was positively related to total mortality, ischemic heart 

disease mortality, and mortality from other cardiovascular disease. 
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Urbanicity 

Urbanicity controlled for county population and proximity to a metropolitan area.  It assured 

attention to structural factors manifest as inequity in healthcare access and higher incidence of 

chronic disease (Singh & Siahpush, 2014), and as a proxy for health facility concentration.  Four 

categories were created based on the U.S. Department of Agriculture Economic Research 

Service’s 2013 Rural-Urban Continuum Codes (RUCC) and classified as metropolitan or large, 

medium, or small nonmetropolitan. The more rural categories - large, medium, and small non-

metro areas - were considered in reference to the metropolitan areas. Urbanicity was significant 

in all tests, but the effect of urbanicity varied among the hypotheses.   

The predicted rates of low infant birth weight, ischemic heart disease mortality, chronic 

lower respiratory disease mortality, and other cardiovascular disease mortality was significantly 

lower in small non-metro areas than in metropolitan areas.  This result suggests a higher 

prevalence of healthy behaviors such as nonsmoking, lower BMI, and greater physical activity in 

more rural areas than in metropolitan areas.  This is supported by recent analysis of the 

Behavioral Risk Factor Surveillance System results (Matthews et al., 2017).  The predicted infant 

mortality rate in large non-metro areas was consistently lower when compared to the reference 

group major metropolitan area. It is known that availability and quality of prenatal care are vital 

to maternal health outcomes, however other neighborhood effects play an essential role.  The 

availability of prenatal care and services in major metropolitan areas may not surmount the 

stresses of life in depressed inner city areas, and those at lower income levels may not have the 

choice to live in the suburbs (Egerter et al., 2011; Pickett & Pearl, 2001; Wilkinson & Pickett, 

2006).  
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In contrast, the predicted total mortality rate in medium non-metro areas was consistently 

higher when compared with the reference group major metropolitan area.  Further, the predicted 

cerebrovascular mortality rate in large non-metro areas was higher than the reference group, but 

lower than the reference group in medium and small non-metro areas.  These geographic 

disparities might reflect the combination of differences in behavioral risk, socioeconomic status, 

and unequal access to healthcare (Singh, Azuine, & Siahpush, 2015). 

  

Implications for Research Question 

 This study examined seven hypotheses to answer the research question: What is the 

relationship between RN supply and population health? In sum, the study found that greater RN 

supply is significantly related to higher mortality rates from ischemic heart disease, other 

cardiovascular disease, and chronic lower respiratory disease in the distributed lag models. 

Higher RN supply is not significantly related to rates of low infant birth weight, infant mortality, 

or mortality from cerebrovascular disease in any model. Higher RN supply is positively related 

to total deaths in the contemporaneous and lagged model. With few exceptions, prior research 

found that physician supply is non-significant or positively related to these negative outcomes. 

Health insurance and obesity tended to be positively related to poor health outcomes at the 

county level, while income and education were negatively related with better health outcomes.   

 The results suggest a counter-intuitive relationship between RN supply and health 

outcomes. Because of its curvilinearity, the relationship is unclear. The results here provide 

evidence of a possible relationship. More research is needed to understand these relationships. 
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Strengths, Limitations, & Future Research 

This exploratory study provides the first findings on the relationship between RN supply 

and population health. A strength of this study is that the lagged models used introduced 

temporal order to observe the effect of RN supply on population health outcomes that manifest 

after the opportunity to receive healthcare services, and addressed the potential for simultaneity 

bias. Another strength of the study is the inclusion of a quadratic term in the statistical model for 

a more accurate examination of the non-linear relationship between healthcare outcomes and 

healthcare workforce supply. Additionally, Tobit regression models facilitated the analyses of 

left censored health outcome data.  However, since the research is cross-sectional, only 

associations and not causal relationships can be inferred.   

This study had some limitations. The health outcomes selected for the study addressed 

the limitations of previous health research in which health status outcomes were self-reported, 

were gender specific, or were health screenings. However, by using mortality data, other sources 

of bias may have been introduced and health-seeking behavior may not be adequately captured. 

Poor self-reported health status may lead persons to seek medical attention sooner or more 

frequently, which results in reduced health risks. The control variables selected - education, 

median income, ethnicity, and insurance coverage – partially address this inadequacy. A strong 

positive association between low income and educational attainment and poor self-rated health 

has been identified (Kawachi et al., 1999).  

One important consideration is that sequelae from other chronic diseases contribute to the 

health outcome measures selected for this study, thus biasing results.  For example, lupus may 

cause patients to suffer a cardiovascular event.   Lupus  disproportionately affects women and 

people of color (Bernatsky et al., 2006; Manzi et al., 1997). Although the variable, race, (per cent 
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of Black population) modifies this relationship, its direction is unknown.  Future research should 

examine the relationship between RN supply and the mortality that is amenable to healthcare.  

The main limitation of the research was the data missing from secondary datasets, 

particularly as these data affected the outcome variables for mortality. To prevent identification 

of individual patients, the National Center for Health Statistics does not report mortality and low 

infant birth weight data for counties with fewer than 10 instances annually. Consequently, low or 

no mortality in a county underreports population health outcomes particularly in low population 

counties; this introduced a selection bias. The Tobit regression models used in this study 

compensate for these left censored mortality data, however these models can also introduce 

another source of bias. Even though the data are reported as zero in counties in which  mortality 

is 10 or less, the bias results from  instances of numbers  closer to nine (Breen, 1996; Burke, 

2009; Carson & Sun, 2007; Comber, Brunsdon, & Radburn, 2011; Grogger & Carson, 1991; Lin 

& Cheng, 2011; Muddasar Jamil Shera & Sajjad Dar, 2014).  

Another limitation of analyzing secondary datasets is that the study is restricted to 

definitions used by the primary data collector. RN supply - defined in the dataset as the number 

of licensed RNs - includes all RNs with a license whether or not they are currently working, and, 

in particular, whether or not they are working in direct patient care. Thus, this study potentially 

over counts the number of RNs contributing directly to population health outcomes. 

Additionally, when data are collected, the address in the dataset is the RN’s residence. The 

practice address could be a different county (Wing, Armstrong, Forte, & Moore, 2016). Thus, 

there may be geographic interdependencies such that the health outcomes in one county are 

affected by RN supply in another county. Spatial regression should be used in future research to 
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deconstruct these dependencies using data that include a workforce participation adjustment for 

RN supply. 

The  fallacy in any clinician to population ratio is  the assumption that patients do not 

travel outside  the  area of measurement for care (Chen & Lowenstein, 1985; Petersdorf, 1975; 

Rosenblatt & Hart, 2000; Rosenthal et al., 2005). For example, patients may travel into 

neighboring counties or cross state lines to seek care (Basu & Mobley, 2007).  Alternatively, 

patients may not travel in straight lines between points of origin and destination because of 

geography or road networks. . The metric also assumes that use rates are exactly the same, and 

that health facility concentrations in the market are similar;  this may not be the case (Glied & 

Ma, 2015).  

Further, the data were not a random sample or a purposive or strongly representative 

sample of the counties in the U.S.  Since RN supply data was unevenly available only counties 

from 19 states were included. Due to these limitations, the generalizability of this study is 

somewhat limited. 

Last, the analytical challenge presented by endogenous loops between RN supply, health 

facility location and population health outcomes (discussed earlier).  Future research should 

continue exploring and parse the relationship between RN supply and population health 

outcomes using structural equation modeling to isolate and address the moderating variable(s) 

and the endogenous relationships with healthcare facility location.  Although this analysis 

addressed the variation between metropolitan and non-metropolitan areas and population size, 

other ecological effects on population health should be considered in future research.  Factors 

that measure healthcare utilization, health facility concentration, quality of life, environmental 
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quality, community or neighborhood cohesion, health behaviors, and health risk should be 

considered for comprehensive study.    

Future studies should consider other snapshot health outcome measures that assess 

population health across the lifespan and include other healthcare professionals such as physician 

assistants for comparative purposes.  Analyses should address spatial effects.  In addition, 

retrospective longitudinal studies that track RN and APRN supply over time in relation to 

population health trends are recommended. 

Implications for Policy and Practice 

 Future demand for services will increase as Baby Boomers seek healthcare. (Dall et al., 

2013). The debate over expanded roles for APRNs complicates determining the extent of the 

pending healthcare workforce shortage of primary care providers. Attention must be paid to RN 

supply; policies must be devised to reduce the current and growing future RN shortage (Center to 

Champion Nursing in America (CCNA), n.d.; Skillman, Palazzo, Hart, & Keepnews, 2010). 

Knowing the relationship between RN/APRN supply and population health or aggregate health 

outcomes can influence healthcare workforce policies. At this point, that knowledge is limited.  

Healthcare workforce research is essential for effective health policy development and 

policy evaluation. This study highlights the significance of an adequate RN workforce. However, 

a limitation on this type of research is the paucity of national historical data on RN supply. This 

illustrates the importance of a data collection and sharing strategy to support research to assure 

the adequacy of RN supply and understand its geographic maldistribution. Maldistribution 

affects parity of access to healthcare, particularly in rural areas and depressed urban areas.  

While it is unreasonable to expect an RN supply evenly distributed by population, there are many 

disparities that are influenced by location. It is known that health disparities and the etiology of 
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disease transcend boundaries imposed by administrative divisions at the local level of 

government (Clark & Williams, 2016; Murray et al., 2006).  Therefore, robust historical and 

longitudinal RN supply data must be available to inform strategic decision making, workforce 

planning, and program effectiveness evaluation. 
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