You are here
Structured Light-Field Focusing 3D Density Measurements of A Supersonic Cone
- Date Issued:
- 2018
- Abstract/Description:
- This study describes three-dimensional (3D) quantitative visualization of density field in a supersonic flow around a cone spike. A measurement of the density gradient is conducted within a supersonic wind tunnel facility at the Propulsion and Energy Research Laboratory at the University of Central Florida utilizing Structured Light-Field Focusing Schlieren (SLLF). In conventional schlieren and Shadowgraph techniques, it is widely known that a complicated optical system is needed and yet visualizable area depends on an effective diameter of lenses and mirrors. Unlike these techniques, SLLF is yet one of the same family as schlieren photography, it is capable of non-intrusive turbulent flow measurement with relatively low cost and easy-to-setup instruments. In this technique, cross-sectional area in the flow field that is parallel to flows can be observed while other schlieren methods measure density gradients in line-of-sight, meaning that it measures integrated density distribution caused by discontinuous flow parameters. To reconstruct a 3D model of shock structure, two-dimensional (2D) images are pictured to process in MATLAB. The ultimate goal of this study is to introduce a novel technique of SLLF and quantitative 3D shock structures generated around a cone spike to reveal the interaction between free-stream flow and the high-pressure region.
Title: | Structured Light-Field Focusing 3D Density Measurements of A Supersonic Cone. |
![]() ![]() |
---|---|---|
Name(s): |
Shigematsu, Ryonosuke, Author Ahmed, Kareem, Committee Chair Bhattacharya, Samik, Committee Member Das, Tuhin, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2018 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | This study describes three-dimensional (3D) quantitative visualization of density field in a supersonic flow around a cone spike. A measurement of the density gradient is conducted within a supersonic wind tunnel facility at the Propulsion and Energy Research Laboratory at the University of Central Florida utilizing Structured Light-Field Focusing Schlieren (SLLF). In conventional schlieren and Shadowgraph techniques, it is widely known that a complicated optical system is needed and yet visualizable area depends on an effective diameter of lenses and mirrors. Unlike these techniques, SLLF is yet one of the same family as schlieren photography, it is capable of non-intrusive turbulent flow measurement with relatively low cost and easy-to-setup instruments. In this technique, cross-sectional area in the flow field that is parallel to flows can be observed while other schlieren methods measure density gradients in line-of-sight, meaning that it measures integrated density distribution caused by discontinuous flow parameters. To reconstruct a 3D model of shock structure, two-dimensional (2D) images are pictured to process in MATLAB. The ultimate goal of this study is to introduce a novel technique of SLLF and quantitative 3D shock structures generated around a cone spike to reveal the interaction between free-stream flow and the high-pressure region. | |
Identifier: | CFE0007096 (IID), ucf:51965 (fedora) | |
Note(s): |
2018-05-01 M.S.A.E. Engineering and Computer Science, Mechanical and Aerospace Engineering Masters This record was generated from author submitted information. |
|
Subject(s): | Flow Visualization -- Schlieren -- Supersonic Flow | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007096 | |
Restrictions on Access: | public 2018-05-15 | |
Host Institution: | UCF |