You are here

Development and Application of an Optimization Approach for Cost-Effective Deployment of Advanced Wrong-Way Driving Countermeasures

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Wrong-way driving (WWD) is a dangerous behavior, especially on high-speed divided highways. The nature of WWD crashes makes it difficult for agencies to combat them effectively. Advanced WWD countermeasures equipped with flashing lights, detection devices, and cameras can significantly reduce WWD. However, these countermeasures' high costs mean that agencies often cannot deploy them at all exit ramps. To help agencies identify the most cost-effective deployment locations for advanced WWD countermeasures, an innovative WWD countermeasure optimization approach was developed. This approach consists of a WWD hotspots model and a WWD countermeasures optimization algorithm. The WWD hotspots model uses non-crash WWD events, interchange designs, and traffic volumes to predict the number of WWD crashes on multi-exit roadway segments and identify hotspot segments with high WWD crash risk (WWCR). Then, the optimization algorithm uses these WWCR values to identify the optimal exits for advanced WWD countermeasure deployment based on available resources and other applicable constraints. This approach was applied to the Central Florida Expressway Authority (CFX) and Florida's Turnpike Enterprise (FTE) toll road networks. In both applications, the optimization algorithm provided significant WWCR reduction while meeting investment and other constraints and better allocated the agencies' resources compared to only deploying advanced WWD countermeasures in WWD hotspots. The optimization algorithm was also used to identify mainline sections on the CFX network with high WWCR. Additionally, the optimization algorithm was used to evaluate existing Rectangular Flashing Beacon (RFB) and Light-Emitting Diode (LED) advanced WWD countermeasures on the CFX (RFBs) and FTE (RFBs and LEDs) networks. These evaluations showed that the crash reduction and injury reduction benefits of these advanced WWD countermeasures have exceeded their costs since these countermeasures have been deployed. By using this WWD countermeasures optimization approach, agencies throughout the United States could proactively and cost-effectively deploy advanced WWD countermeasures to reduce WWD.
Title: Development and Application of an Optimization Approach for Cost-Effective Deployment of Advanced Wrong-Way Driving Countermeasures.
19 views
9 downloads
Name(s): Sandt, Adrian, Author
Al-Deek, Haitham, Committee Chair
Eluru, Naveen, Committee Member
Hasan, Samiul, Committee Member
Zheng, Qipeng, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Wrong-way driving (WWD) is a dangerous behavior, especially on high-speed divided highways. The nature of WWD crashes makes it difficult for agencies to combat them effectively. Advanced WWD countermeasures equipped with flashing lights, detection devices, and cameras can significantly reduce WWD. However, these countermeasures' high costs mean that agencies often cannot deploy them at all exit ramps. To help agencies identify the most cost-effective deployment locations for advanced WWD countermeasures, an innovative WWD countermeasure optimization approach was developed. This approach consists of a WWD hotspots model and a WWD countermeasures optimization algorithm. The WWD hotspots model uses non-crash WWD events, interchange designs, and traffic volumes to predict the number of WWD crashes on multi-exit roadway segments and identify hotspot segments with high WWD crash risk (WWCR). Then, the optimization algorithm uses these WWCR values to identify the optimal exits for advanced WWD countermeasure deployment based on available resources and other applicable constraints. This approach was applied to the Central Florida Expressway Authority (CFX) and Florida's Turnpike Enterprise (FTE) toll road networks. In both applications, the optimization algorithm provided significant WWCR reduction while meeting investment and other constraints and better allocated the agencies' resources compared to only deploying advanced WWD countermeasures in WWD hotspots. The optimization algorithm was also used to identify mainline sections on the CFX network with high WWCR. Additionally, the optimization algorithm was used to evaluate existing Rectangular Flashing Beacon (RFB) and Light-Emitting Diode (LED) advanced WWD countermeasures on the CFX (RFBs) and FTE (RFBs and LEDs) networks. These evaluations showed that the crash reduction and injury reduction benefits of these advanced WWD countermeasures have exceeded their costs since these countermeasures have been deployed. By using this WWD countermeasures optimization approach, agencies throughout the United States could proactively and cost-effectively deploy advanced WWD countermeasures to reduce WWD.
Identifier: CFE0007364 (IID), ucf:52093 (fedora)
Note(s): 2018-12-01
Ph.D.
Engineering and Computer Science, Civil, Environmental and Construction Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Wrong-Way Driving -- Optimization -- Countermeasures -- Benefit-Cost Analysis -- Hotspots -- Modeling
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007364
Restrictions on Access: campus 2023-12-15
Host Institution: UCF

In Collections