You are here

Simultaneous Measurement of Isotope-free Tracer and Interdiffusion Coefficients in Sandwich Type Diffusion Couples

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
The experimental determination of the tracer or self-diffusion coef?cient as a function of composition can be quite burdensome in alloys since separate measurements must be carried out for each alloy composition. A new formalism recently developed by I.V. Belova, N.S. Kulkarni, Y.H. Sohn and G.E. Murch, based on linear response theory combined with the Boltzmann(-)Matano method allows determination of tracer and interdiffusion coef?cients simultaneously from a single, isotope-free solid to solid diffusion couple experiment. In this study, for the first time, an experimental investigation with an analytical approach based on the new formalism has been carried out in the binary Cu-Ni system. Pure Cu and Ni thin films were deposited in between several binary diffusion couples with varying terminal alloy compositions (such as Cu, Cu-25Ni, Cu-50Ni, Cu-75Ni, Ni). Diffusion couples were then annealed at 800(&)deg;C, 900(&)deg;C and 1000(&)deg;C. After annealing, the couples were water quenched, cross-sectioned, and prepared for compositional characterization. Scanning Electron Microscopy was employed to examine the interdiffusion zone. Energy Dispersive X-ray Spectroscopy was conducted to obtain concentration profiles for quantitative analysis. The superposition of the concentration profiles of thin film and interdiffusion were analyzed for the simultaneous determination of tracer and interdiffusion coefficients. The tracer diffusion coefficient of Cu, tracer diffusion coefficient of Ni and inter-diffusion coefficients simultaneously determined using the experimental methodology based on the novel formalism derived, and produced results consistent with previously reported values determined independently by radiotracer and interdiffusion experiments.
Title: Simultaneous Measurement of Isotope-free Tracer and Interdiffusion Coefficients in Sandwich Type Diffusion Couples.
54 views
13 downloads
Name(s): Schulz, Esin, Author
Sohn, Yongho, Committee Chair
Bai, Yuanli, Committee Member
Florczyk, Stephen, Committee Member
Coffey, Kevin, Committee Member
Orlovskaya, Nina, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The experimental determination of the tracer or self-diffusion coef?cient as a function of composition can be quite burdensome in alloys since separate measurements must be carried out for each alloy composition. A new formalism recently developed by I.V. Belova, N.S. Kulkarni, Y.H. Sohn and G.E. Murch, based on linear response theory combined with the Boltzmann(-)Matano method allows determination of tracer and interdiffusion coef?cients simultaneously from a single, isotope-free solid to solid diffusion couple experiment. In this study, for the first time, an experimental investigation with an analytical approach based on the new formalism has been carried out in the binary Cu-Ni system. Pure Cu and Ni thin films were deposited in between several binary diffusion couples with varying terminal alloy compositions (such as Cu, Cu-25Ni, Cu-50Ni, Cu-75Ni, Ni). Diffusion couples were then annealed at 800(&)deg;C, 900(&)deg;C and 1000(&)deg;C. After annealing, the couples were water quenched, cross-sectioned, and prepared for compositional characterization. Scanning Electron Microscopy was employed to examine the interdiffusion zone. Energy Dispersive X-ray Spectroscopy was conducted to obtain concentration profiles for quantitative analysis. The superposition of the concentration profiles of thin film and interdiffusion were analyzed for the simultaneous determination of tracer and interdiffusion coefficients. The tracer diffusion coefficient of Cu, tracer diffusion coefficient of Ni and inter-diffusion coefficients simultaneously determined using the experimental methodology based on the novel formalism derived, and produced results consistent with previously reported values determined independently by radiotracer and interdiffusion experiments.
Identifier: CFE0007368 (IID), ucf:52101 (fedora)
Note(s): 2018-12-01
Ph.D.
Engineering and Computer Science, Materials Science Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Tracer Diffusion -- Interdiffusion -- Experimental Techniques
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007368
Restrictions on Access: public 2018-12-15
Host Institution: UCF

In Collections