You are here

Three Studies Examining Auditors' Use of Data Analytics

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
This dissertation comprises three studies, one qualitative and two experimental, that center on auditor's use of data analytics. Data analytics hold the potential for auditors to reallocate time spent on labor intensive tasks to judgment intensive tasks (Brown-Liburd et al. 2015), ultimately improving audit quality (Raphael 2017). Yet the availability of these tools does not guarantee that auditors will incorporate the data analytics into their judgments (Davis et al. 1989; Venkatesh et al. 2003). The first study investigates implications of using data analytics to structure the audit process for nonprofessionalized auditors. As the public accounting profession continues down a path of de-professionalization (Dirsmith et al. 2015), data analytics may increasingly be used as a control mechanism for guiding nonprofessionalized auditors' work tasks. Results of this study highlight negative ramifications of using nonprofessionalized auditors in a critical audit setting. The second study examines how different types of data analytics impact auditors' judgments. This study demonstrates the joint impact that the type of data analytical model and type of data analyzed have on auditors' judgments. This study contributes to the literature and practice by demonstrating that data analytics do not uniformly impact auditors' judgments. The third study examines how auditors' reliance on data analytics is impacted by the presentation source and level of risk identified. This study provide insights into the effectiveness of public accounting firms' development of data scientist groups to incorporate the data analytic skillset into audit teams.Collectively, these studies contribute to the literature by providing evidence on auditors' use of data analytics. Currently, the literature is limited to demonstrating that auditors are not effective at identifying patterns in data analytics visualizations when viewed before traditional audit evidence (Rose et al. 2017). The three studies in this dissertation highlight that not all data analytics influence judgments equally.
Title: Three Studies Examining Auditors' Use of Data Analytics.
6 views
3 downloads
Name(s): Koreff, Jared, Author
Sutton, Steven, Committee Chair
Arnold, Vicky, Committee CoChair
Baudot, Lisa, Committee Member
Brazel, Joe, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation comprises three studies, one qualitative and two experimental, that center on auditor's use of data analytics. Data analytics hold the potential for auditors to reallocate time spent on labor intensive tasks to judgment intensive tasks (Brown-Liburd et al. 2015), ultimately improving audit quality (Raphael 2017). Yet the availability of these tools does not guarantee that auditors will incorporate the data analytics into their judgments (Davis et al. 1989; Venkatesh et al. 2003). The first study investigates implications of using data analytics to structure the audit process for nonprofessionalized auditors. As the public accounting profession continues down a path of de-professionalization (Dirsmith et al. 2015), data analytics may increasingly be used as a control mechanism for guiding nonprofessionalized auditors' work tasks. Results of this study highlight negative ramifications of using nonprofessionalized auditors in a critical audit setting. The second study examines how different types of data analytics impact auditors' judgments. This study demonstrates the joint impact that the type of data analytical model and type of data analyzed have on auditors' judgments. This study contributes to the literature and practice by demonstrating that data analytics do not uniformly impact auditors' judgments. The third study examines how auditors' reliance on data analytics is impacted by the presentation source and level of risk identified. This study provide insights into the effectiveness of public accounting firms' development of data scientist groups to incorporate the data analytic skillset into audit teams.Collectively, these studies contribute to the literature by providing evidence on auditors' use of data analytics. Currently, the literature is limited to demonstrating that auditors are not effective at identifying patterns in data analytics visualizations when viewed before traditional audit evidence (Rose et al. 2017). The three studies in this dissertation highlight that not all data analytics influence judgments equally.
Identifier: CFE0007210 (IID), ucf:52289 (fedora)
Note(s): 2018-08-01
Ph.D.
Business Administration, Dean's Office CBA
Doctoral
This record was generated from author submitted information.
Subject(s): Data analytics -- auditing -- fraud -- Health care
cognitive fit -- nonfinancial measures
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007210
Restrictions on Access: public 2018-08-15
Host Institution: UCF

In Collections