You are here

Magnesium-based treatment for the degradation of octachlorodibenzofuran and trinitrotoluene

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
The aim of the present research is to investigate the efficacy of using ball-milled zero-valent magnesium (ZVMg) with and without activated carbon (AC) for the dechlorination of polychlorinated dibenzofurans. Three different solvent systems are presented here which are ethanol, ethanol/ethyl lactate (90:10), and 2-butoxyethanol. These solvents in combination with ZVMg with and without activated carbon were tested towards the degradation of octachlorodibenzofuran (OCDF, the most highly chlorinated PCDF congener). All the tested systems were very powerful and reductively dechlorinated OCDF to less chlorinated congeners. However, the system of ball-milled ZVMg and ethanol was the only system which converted OCDF and all byproducts to dibenzofuran, the chlorine- free compound. Kinetic results for all the studied systems fit a pseudo-first-order decay model with respect to OCDF degradation. A detailed study of the formed byproducts during the dechlorination process and a proposed degradation pathway for OCDF are present in this research. The systems consisting of ZVMg and ZVMg/AC in acidified ethanol and acidified 2-butoxyethanol were examined towards the degradation of the low-chlorinated congener 2,8-dichlorodibenzofuran. This compound was degraded efficiently in all systems. The addition of activated carbon enhanced the degradation kinetics of 2,8-dichlorodibenzofuran degradation. Another study using ZVMg and ZVMg/AC in acidified ethanol was conducted to evaluate the efficiency of the system towards the remediation of the explosive contaminant trinitrotoluene (TNT). Both systems were effective in the degradation of TNT and the reactions were found to follow pseudo-first-order kinetics. A plausible degradation pathway is proposed in this study based on the identified degradation products.
Title: Magnesium-based treatment for the degradation of octachlorodibenzofuran and trinitrotoluene.
28 views
14 downloads
Name(s): Mogharbel, Amal, Author
Yestrebsky, Cherie, Committee Chair
Beazley, Melanie, Committee Member
Zou, Shengli, Committee Member
Legron-Rodriguez, Tamra, Committee Member
Randall, Andrew, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The aim of the present research is to investigate the efficacy of using ball-milled zero-valent magnesium (ZVMg) with and without activated carbon (AC) for the dechlorination of polychlorinated dibenzofurans. Three different solvent systems are presented here which are ethanol, ethanol/ethyl lactate (90:10), and 2-butoxyethanol. These solvents in combination with ZVMg with and without activated carbon were tested towards the degradation of octachlorodibenzofuran (OCDF, the most highly chlorinated PCDF congener). All the tested systems were very powerful and reductively dechlorinated OCDF to less chlorinated congeners. However, the system of ball-milled ZVMg and ethanol was the only system which converted OCDF and all byproducts to dibenzofuran, the chlorine- free compound. Kinetic results for all the studied systems fit a pseudo-first-order decay model with respect to OCDF degradation. A detailed study of the formed byproducts during the dechlorination process and a proposed degradation pathway for OCDF are present in this research. The systems consisting of ZVMg and ZVMg/AC in acidified ethanol and acidified 2-butoxyethanol were examined towards the degradation of the low-chlorinated congener 2,8-dichlorodibenzofuran. This compound was degraded efficiently in all systems. The addition of activated carbon enhanced the degradation kinetics of 2,8-dichlorodibenzofuran degradation. Another study using ZVMg and ZVMg/AC in acidified ethanol was conducted to evaluate the efficiency of the system towards the remediation of the explosive contaminant trinitrotoluene (TNT). Both systems were effective in the degradation of TNT and the reactions were found to follow pseudo-first-order kinetics. A plausible degradation pathway is proposed in this study based on the identified degradation products.
Identifier: CFE0007761 (IID), ucf:52374 (fedora)
Note(s): 2018-12-01
Ph.D.
Sciences, Chemistry
Doctoral
This record was generated from author submitted information.
Subject(s): Ball-milled zero-valent magnesium -- Activated carbon -- Polychlorinated dibenzofuran -- Octachlorodibenzofuran
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007761
Restrictions on Access: public 2019-06-15
Host Institution: UCF

In Collections