You are here

Nanoscale Spectroscopy in Energy and Catalytic Applications

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Emerging societal challenges such as the need for more sustainable energy and catalysis are requiring more sensitive and versatile measurements at the nanoscale. This is the case in the design and optimization of new materials for energy harvesting (solar cells) and energy storage devices (batteries and capacitors), or for the development of new catalysts for carbon sequestration or other reactions of interest. Hence, the ability to advance spectroscopy with nanoscale spatial resolution and high sensitivity holds great promises to meet the demands of deeper fundamental understanding to boost the development and deployment of nano-based devices for real applications. In this dissertation, the impact of nanoscale characterization on energy-related and catalytic materials is considered. Firstly an introduction of the current energy and environmental challenges and our motivations are presented. We discuss how revealing nanoscale properties of solar cell active layers and supercapacitor electrodes can greatly benefit the performance of devices, and ponder on the advantages over conventional characterization techniques. Next, we focus on two dimensional materials as promising alternative catalysts to replace conventional noble metals for carbon sequestration and its conversion to added-value products. Defect-laden hexagonal boron nitride (h-BN) has been identified as a good catalyst candidate for carbon sequestration. Theoretically, defects exhibit favorable properties as reaction sites. However, the detailed mechanism pathways cannot be readily probed experimentally, due to the lack of tools with sufficient sensitivity and time resolution. A comprehensive study of the design and material processes used to introduce defects in h-BN in view of improving the catalytic properties is presented. The processing-structure-property relationships are investigated using a combination of conventional characterization and advanced nanoscale techniques. In addition to identifying favorable conditions for defect creation, we also report on the first signs of local reactions at defect sites obtained with nanoscale spectroscopy. Next, we explore avenues to improve the sensitivity and time-resolution of nanoscale measurements using light-assisted AFM-based nanomechanical spectroscopy. For each configuration, we evaluate the new system by comparing its performance to the commercial capabilities.Lastly, we provide a perspective on the opportunities for state-of-the-art characterization to impact the fields of catalysis and sustainable energy, as well as the urge for highly sensitive functional capabilities and time-resolution for nanoscale studies.
Title: Nanoscale Spectroscopy in Energy and Catalytic Applications.
18 views
8 downloads
Name(s): Ding, Yi, Author
Tetard, Laurene, Committee Chair
Challapalli, Suryanarayana, Committee Member
Zhai, Lei, Committee Member
Thomas, Jayan, Committee Member
Lyakh, Arkadiy, Committee Member
Blair, Richard, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Emerging societal challenges such as the need for more sustainable energy and catalysis are requiring more sensitive and versatile measurements at the nanoscale. This is the case in the design and optimization of new materials for energy harvesting (solar cells) and energy storage devices (batteries and capacitors), or for the development of new catalysts for carbon sequestration or other reactions of interest. Hence, the ability to advance spectroscopy with nanoscale spatial resolution and high sensitivity holds great promises to meet the demands of deeper fundamental understanding to boost the development and deployment of nano-based devices for real applications. In this dissertation, the impact of nanoscale characterization on energy-related and catalytic materials is considered. Firstly an introduction of the current energy and environmental challenges and our motivations are presented. We discuss how revealing nanoscale properties of solar cell active layers and supercapacitor electrodes can greatly benefit the performance of devices, and ponder on the advantages over conventional characterization techniques. Next, we focus on two dimensional materials as promising alternative catalysts to replace conventional noble metals for carbon sequestration and its conversion to added-value products. Defect-laden hexagonal boron nitride (h-BN) has been identified as a good catalyst candidate for carbon sequestration. Theoretically, defects exhibit favorable properties as reaction sites. However, the detailed mechanism pathways cannot be readily probed experimentally, due to the lack of tools with sufficient sensitivity and time resolution. A comprehensive study of the design and material processes used to introduce defects in h-BN in view of improving the catalytic properties is presented. The processing-structure-property relationships are investigated using a combination of conventional characterization and advanced nanoscale techniques. In addition to identifying favorable conditions for defect creation, we also report on the first signs of local reactions at defect sites obtained with nanoscale spectroscopy. Next, we explore avenues to improve the sensitivity and time-resolution of nanoscale measurements using light-assisted AFM-based nanomechanical spectroscopy. For each configuration, we evaluate the new system by comparing its performance to the commercial capabilities.Lastly, we provide a perspective on the opportunities for state-of-the-art characterization to impact the fields of catalysis and sustainable energy, as well as the urge for highly sensitive functional capabilities and time-resolution for nanoscale studies.
Identifier: CFE0007751 (IID), ucf:52387 (fedora)
Note(s): 2018-12-01
Ph.D.
Engineering and Computer Science, Materials Science and Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): nanoscale spectroscopy -- catalyst -- sustainable energy -- atomic force microscopy
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007751
Restrictions on Access: public 2019-06-15
Host Institution: UCF

In Collections