You are here

Fabrication and Characterization of Nonlinear Optical Ceramics for Random Quasi-Phase-Matching

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
A number of technologies rely on the conversion of short laser pulses from one spectral domain to another. Efficient frequency conversion is currently obtained in ordered nonlinear optical materials and requires a periodic spatial modulation of their nonlinear coefficient which results in a narrow bandwidth. One can trade off efficiency for more spectral bandwidth by relaxing the strict phase-matching conditions and achieve nonlinear interaction in carefully engineered disordered crystalline aggregates, in a so-called random quasi-phase-matching (rQPM) process. In this dissertation, we examine appropriate fabrication pathways for (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) and ZnSe transparent ceramics for applications in the mid-IR. The main challenge associated with the fabrication of high transparency PMN-PT ceramics is to avoid the parasitic pyrochlore phase. The most effective method to suppress the formation of this undesired phase is to use magnesium niobate (MgNb2O6) as the starting material. We have found that, contrary to commercially available lead oxide powders, nanopowders synthesized in our lab by the combustion method help improve the densification of ceramics and their overall optical quality. The effects of dopants on the microstructure evolution and phase-purity control in PMN-PT ceramics are also investigated and show that La3+ helps control grain-growth and get a pure perovskite phase, thereby improving the samples transparency. With large second order susceptibility coefficients and wide transmission window from 0.45 to 21 (&)#181;m, polycrystalline zinc selenide is also an ideal candidate material for accessing the MWIR spectrum through rQPM nonlinear interaction. We have investigated non-stoichiometric heat-treatment conditions necessary to develop adequate microstructure for rQPM from commercial CVD-grown ZnSe ceramics. We have been able to demonstrate the world's first optical parametric oscillation (OPO) based on rQPM in ZnSe transparent ceramic, enabling broadband frequency combs spanning 3-7.5 (&)#181;m.
Title: Fabrication and Characterization of Nonlinear Optical Ceramics for Random Quasi-Phase-Matching.
74 views
52 downloads
Name(s): Chen, Xuan, Author
Gaume, Romain, Committee Chair
Richardson, Kathleen, Committee Member
Challapalli, Suryanarayana, Committee Member
Sohn, Yongho, Committee Member
Kuebler, Stephen, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: A number of technologies rely on the conversion of short laser pulses from one spectral domain to another. Efficient frequency conversion is currently obtained in ordered nonlinear optical materials and requires a periodic spatial modulation of their nonlinear coefficient which results in a narrow bandwidth. One can trade off efficiency for more spectral bandwidth by relaxing the strict phase-matching conditions and achieve nonlinear interaction in carefully engineered disordered crystalline aggregates, in a so-called random quasi-phase-matching (rQPM) process. In this dissertation, we examine appropriate fabrication pathways for (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) and ZnSe transparent ceramics for applications in the mid-IR. The main challenge associated with the fabrication of high transparency PMN-PT ceramics is to avoid the parasitic pyrochlore phase. The most effective method to suppress the formation of this undesired phase is to use magnesium niobate (MgNb2O6) as the starting material. We have found that, contrary to commercially available lead oxide powders, nanopowders synthesized in our lab by the combustion method help improve the densification of ceramics and their overall optical quality. The effects of dopants on the microstructure evolution and phase-purity control in PMN-PT ceramics are also investigated and show that La3+ helps control grain-growth and get a pure perovskite phase, thereby improving the samples transparency. With large second order susceptibility coefficients and wide transmission window from 0.45 to 21 (&)#181;m, polycrystalline zinc selenide is also an ideal candidate material for accessing the MWIR spectrum through rQPM nonlinear interaction. We have investigated non-stoichiometric heat-treatment conditions necessary to develop adequate microstructure for rQPM from commercial CVD-grown ZnSe ceramics. We have been able to demonstrate the world's first optical parametric oscillation (OPO) based on rQPM in ZnSe transparent ceramic, enabling broadband frequency combs spanning 3-7.5 (&)#181;m.
Identifier: CFE0007748 (IID), ucf:52403 (fedora)
Note(s): 2018-12-01
Ph.D.
Engineering and Computer Science, Materials Science and Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): ?^(2) interaction -- Transparent Ceramic -- PMN-PT -- ZnSe -- Sintering Additive -- Non-stoichiometry -- Grain-growth
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007748
Restrictions on Access: public 2019-06-15
Host Institution: UCF

In Collections