You are here
Improving Traffic Safety at School Zones by Engineering and Operational Countermeasures
- Date Issued:
- 2019
- Abstract/Description:
- Safety issues at school zone areas have been one of the most important topics in the traffic safety field. Although many studies have evaluated the effectiveness of various traffic control devices (e.g., sign, flashing beacon, speed monitoring display), there is a lack of studies exploring different roadway countermeasures and the relationship between school-related factors and crashes. In this study, the most crash-prone school zone was identified in Orange and Seminole Counties, Florida, based on crash rate. Afterward, a microsimulation network was built in VISSIM environment to test different roadway countermeasures in the school zones. Three different countermeasures: two-step speed reduction (TSR), decreasing the number of driveways (DD), and replacing the two-way left-turn lane (TWLTL) to the raised median (RM) were implemented in the microsimulation. Three surrogate safety measures-: (1) time exposed time to collision (TET), (2) time integrated time to collision (TIT) and (3) time exposed rear-end crash risk index (TERCRI) were utilized in this study as indicators for safety evaluation. The higher value of surrogate safety measures indicates higher crash risk. The results showed that both TSR and DD reduced TET, TIT and TERCRI values significantly compare to the base condition. Moreover, the combination of TSR and DD countermeasures outperformed their individual effectiveness. The One-way ANOVA analysis showed that all the sub-scenarios were significantly different from each other. Sensitivity analysis result has proved that all the sub-scenarios in TSR and DD reduced TET, TIT and TERCRI values significantly for different value of TTC threshold. On the other hand, for converting the TWLTL to RM, the crash risk was higher than the base condition because of the turning movements of vehicle. The results of this study could help transportation planners and decision makers to understand the effect of these countermeasures to improve safety at school zones.
Title: | Improving Traffic Safety at School Zones by Engineering and Operational Countermeasures. |
47 views
19 downloads |
---|---|---|
Name(s): |
Rahman, Md Hasibur, Author Abdel-Aty, Mohamed, Committee Chair Lee, JaeYoung, Committee Member Zaki Hussein, Mohamed, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2019 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Safety issues at school zone areas have been one of the most important topics in the traffic safety field. Although many studies have evaluated the effectiveness of various traffic control devices (e.g., sign, flashing beacon, speed monitoring display), there is a lack of studies exploring different roadway countermeasures and the relationship between school-related factors and crashes. In this study, the most crash-prone school zone was identified in Orange and Seminole Counties, Florida, based on crash rate. Afterward, a microsimulation network was built in VISSIM environment to test different roadway countermeasures in the school zones. Three different countermeasures: two-step speed reduction (TSR), decreasing the number of driveways (DD), and replacing the two-way left-turn lane (TWLTL) to the raised median (RM) were implemented in the microsimulation. Three surrogate safety measures-: (1) time exposed time to collision (TET), (2) time integrated time to collision (TIT) and (3) time exposed rear-end crash risk index (TERCRI) were utilized in this study as indicators for safety evaluation. The higher value of surrogate safety measures indicates higher crash risk. The results showed that both TSR and DD reduced TET, TIT and TERCRI values significantly compare to the base condition. Moreover, the combination of TSR and DD countermeasures outperformed their individual effectiveness. The One-way ANOVA analysis showed that all the sub-scenarios were significantly different from each other. Sensitivity analysis result has proved that all the sub-scenarios in TSR and DD reduced TET, TIT and TERCRI values significantly for different value of TTC threshold. On the other hand, for converting the TWLTL to RM, the crash risk was higher than the base condition because of the turning movements of vehicle. The results of this study could help transportation planners and decision makers to understand the effect of these countermeasures to improve safety at school zones. | |
Identifier: | CFE0007708 (IID), ucf:52409 (fedora) | |
Note(s): |
2019-08-01 M.S. Engineering and Computer Science, Civil, Environmental and Construction Engineering Masters This record was generated from author submitted information. |
|
Subject(s): | school zone safety -- two-step speed reduction -- surrogate safety measures -- flashing beacon -- microsimulation | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007708 | |
Restrictions on Access: | public 2019-08-15 | |
Host Institution: | UCF |