You are here

Metabolic Effects of 17a-Estradiol are Growth Hormone Independent and Sex Specific

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Aging is a major risk factor for metabolic syndromes and type two diabetes. With growing elderly populations worldwide and increasing incidence of age-related diseases there is a great need to develop pharmacological interventions that would delay aging and protect from age-related diseases. 17-alpha estradiol (17?-E2) is an epimer of the primary female sex hormone estradiol and has been shown to extend lifespan and downregulate markers of age-related metabolic dysfunction in male mice. Because 17?-E2 does not induce feminization in males it holds potential as a novel therapeutic in humans for age-related metabolic dysfunction. Importantly, we have previously shown that 17?-E2 causes an increase of circulating and hepatic IGF-1 in aged mice, without any changes in GH release in treated animals. Based on this we propose a new hypothesis that 17?-E2 acts through a novel, GH-independent pathway stimulating production of IGF-1 and positively modulating metabolic function in a sex-specific manner. Here we studied 17?-E2 treated long-lived growth hormone receptor knockout (GHRKO) mice, characterized by severely reduced circulating and hepatic IGF-1 due to GH-resistance. We found increases in circulating IGF-1 after treatment in normal and GHRKO male mice, with no effect in female mice, which supports our hypothesis that 17?-E2 induces GH independent IGF-1 production. To determine novel genetic pathways activated by 17?-E2 we performed sequencing of hepatic RNA. Our analysis indicated differential regulation of steroid biosynthesis and insulin signaling pathways. The validation of our sequencing data using qPCR showed significant upregulation of genes involved in insulin action. Importantly, differential regulation of these pathways was present in normal male mice, with no changes in normal females or either male or female GHRKO animals. In summary, this new data supports our hypothesis of a sex-specific effect of 17?-E2 treatment and differing mechanisms of action by which 17?-E2 upregulates IGF-1 independently of GH action.
Title: Metabolic Effects of 17a-Estradiol are Growth Hormone Independent and Sex Specific.
45 views
30 downloads
Name(s): Sidhom, Silvana, Author
Masternak, Michal, Committee Chair
Altomare, Deborah, Committee Member
Siddiqi, Shadab, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2019
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Aging is a major risk factor for metabolic syndromes and type two diabetes. With growing elderly populations worldwide and increasing incidence of age-related diseases there is a great need to develop pharmacological interventions that would delay aging and protect from age-related diseases. 17-alpha estradiol (17?-E2) is an epimer of the primary female sex hormone estradiol and has been shown to extend lifespan and downregulate markers of age-related metabolic dysfunction in male mice. Because 17?-E2 does not induce feminization in males it holds potential as a novel therapeutic in humans for age-related metabolic dysfunction. Importantly, we have previously shown that 17?-E2 causes an increase of circulating and hepatic IGF-1 in aged mice, without any changes in GH release in treated animals. Based on this we propose a new hypothesis that 17?-E2 acts through a novel, GH-independent pathway stimulating production of IGF-1 and positively modulating metabolic function in a sex-specific manner. Here we studied 17?-E2 treated long-lived growth hormone receptor knockout (GHRKO) mice, characterized by severely reduced circulating and hepatic IGF-1 due to GH-resistance. We found increases in circulating IGF-1 after treatment in normal and GHRKO male mice, with no effect in female mice, which supports our hypothesis that 17?-E2 induces GH independent IGF-1 production. To determine novel genetic pathways activated by 17?-E2 we performed sequencing of hepatic RNA. Our analysis indicated differential regulation of steroid biosynthesis and insulin signaling pathways. The validation of our sequencing data using qPCR showed significant upregulation of genes involved in insulin action. Importantly, differential regulation of these pathways was present in normal male mice, with no changes in normal females or either male or female GHRKO animals. In summary, this new data supports our hypothesis of a sex-specific effect of 17?-E2 treatment and differing mechanisms of action by which 17?-E2 upregulates IGF-1 independently of GH action.
Identifier: CFE0007726 (IID), ucf:52424 (fedora)
Note(s): 2019-08-01
M.S.
Medicine, Biomedical Sciences
Masters
This record was generated from author submitted information.
Subject(s): 17?-E2 -- 17-alpha Estradiol -- Growth Hormone -- IGF1 -- Aging -- Growth Hormone Receptor Knockout -- GHKRO -- Insulin
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007726
Restrictions on Access: campus 2022-08-15
Host Institution: UCF

In Collections