You are here
Seascape genetics and rehabilitation efficiency in the Florida manatee.
- Date Issued:
- 2019
- Abstract/Description:
- The Florida manatee (Trichechus manatus latirostris) was recently downlisted federally from (")endangered(") to (")threatened(") despite acknowledgments of remaining threats to long term population persistence. Challenges to future manatee conservation include, but are not limited to, increases in frequency of harmful algal blooms, intensifying anthropogenic disturbance, and loss of warm-water habitat. The goals of this dissertation were 1) to assess threats to the manatee via a comprehensive, long-term (1973-2016), retrospective analysis of the manatee rescue and rehabilitation partnership (MRRP) and 2) to use seascape genetics analysis to examine whether abiotic, biotic, or anthropogenic seascape variables could significantly describe genetic distance patterns in space for this genetically depauperate population. Results from the MRRP analysis revealed that anthropogenic threats were the most significant reason for manatees to be rescued and rehabilitated. Manatees rescued due to watercraft injuries spent long periods in recovery before succumbing or being released resulting in significant expense to the rehabilitation system. Additionally, the seascape genetics analysis indicated that watercraft activity best explained spatial genetic patterns in the manatee population. It is established that anthropogenic use of watercraft negative affects manatees through the mechanisms of sub-lethal injury and mortality, and these results suggest there may be further negative impacts via the disruption of population genetic connectivity. Future management practices should seriously consider manatee/vessel interactions as watercraft strikes are costly for management, place pressure on the manatee population, and could disrupt population gene flow with potentially dire consequences. Mitigating anthropogenic impacts on the Florida manatee population is critical for future conservation and should be a primary focus.
Title: | Seascape genetics and rehabilitation efficiency in the Florida manatee. |
50 views
30 downloads |
---|---|---|
Name(s): |
Hall, Madison, Author Worthy, Graham, Committee Chair Weishampel, John, Committee Member Hoffman, Eric, Committee Member Dyer, Rodney, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2019 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | The Florida manatee (Trichechus manatus latirostris) was recently downlisted federally from (")endangered(") to (")threatened(") despite acknowledgments of remaining threats to long term population persistence. Challenges to future manatee conservation include, but are not limited to, increases in frequency of harmful algal blooms, intensifying anthropogenic disturbance, and loss of warm-water habitat. The goals of this dissertation were 1) to assess threats to the manatee via a comprehensive, long-term (1973-2016), retrospective analysis of the manatee rescue and rehabilitation partnership (MRRP) and 2) to use seascape genetics analysis to examine whether abiotic, biotic, or anthropogenic seascape variables could significantly describe genetic distance patterns in space for this genetically depauperate population. Results from the MRRP analysis revealed that anthropogenic threats were the most significant reason for manatees to be rescued and rehabilitated. Manatees rescued due to watercraft injuries spent long periods in recovery before succumbing or being released resulting in significant expense to the rehabilitation system. Additionally, the seascape genetics analysis indicated that watercraft activity best explained spatial genetic patterns in the manatee population. It is established that anthropogenic use of watercraft negative affects manatees through the mechanisms of sub-lethal injury and mortality, and these results suggest there may be further negative impacts via the disruption of population genetic connectivity. Future management practices should seriously consider manatee/vessel interactions as watercraft strikes are costly for management, place pressure on the manatee population, and could disrupt population gene flow with potentially dire consequences. Mitigating anthropogenic impacts on the Florida manatee population is critical for future conservation and should be a primary focus. | |
Identifier: | CFE0007647 (IID), ucf:52465 (fedora) | |
Note(s): |
2019-08-01 Ph.D. Sciences, Biology Doctoral This record was generated from author submitted information. |
|
Subject(s): | Trichechus manatus latirostris -- Florida manatee -- marine mammal conservation -- wildlife rehabilitation -- seascape genetics -- connectivity | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007647 | |
Restrictions on Access: | campus 2020-08-15 | |
Host Institution: | UCF |