You are here

Electrochemical Microsensors for In Situ Monitoring of Chemical Compounds in Engineered and Natural Aquatic Systems

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
The adaption of needle-type electrochemical microsensor (or microelectrode) techniques to environmental science and engineering systems has transformed how we understand mass transport in biotic and abiotic processes. Their small tip diameter (5-20(&)#181;m) makes them a unique experimental tool for direct measurements of analytes with high spatial and temporal resolutions, providing a quantitative analysis of flux, diffusion, and reaction rate at a microscale that cannot be obtained using conventional analytical tools. However, their applications have been primarily limited to understanding mass transport dynamics and kinetics in biofilms. With the advancement of sensor fabrication and utilization techniques, their potential applications can surpass conventional biofilm processes. In this dissertation, microsensors were utilized to elucidate mass transport and chemical reactions in multidisciplinary research areas including biological nutrient uptake, oily wastewater treatment, photocatalytic disinfection, and plant disease management, which have not yet explored using this emerging technology. The main objective of this work was to develop novel microsensors and use them for better understanding various natural and engineered aquatic systems. These include; 1) investigating localized photo-aeration and algal-bacterial symbiotic interaction in an advanced algal-bacterial biofilm process for nutrient removal from wastewater, 2) characterizing oil-in-water emulsions for better understanding bilge water emulsion stability, 3) evaluating sun-light driven photocatalytic reactions using a novel MoS2 nanofilm for water disinfection and microcystins-LR removal, 4) developing a zinc ion-selective microsensor and applying them for monitoring the transport of zinc in citrus trees, and 5) integrating heavy metal detection using anodic stripping voltammetry (ASV) in a microelectrode platform for plant applications.
Title: Electrochemical Microsensors for In Situ Monitoring of Chemical Compounds in Engineered and Natural Aquatic Systems.
30 views
12 downloads
Name(s): Church, Jared, Author
Lee, Woo Hyoung, Committee Chair
Randall, Andrew, Committee Member
Duranceau, Steven, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The adaption of needle-type electrochemical microsensor (or microelectrode) techniques to environmental science and engineering systems has transformed how we understand mass transport in biotic and abiotic processes. Their small tip diameter (5-20(&)#181;m) makes them a unique experimental tool for direct measurements of analytes with high spatial and temporal resolutions, providing a quantitative analysis of flux, diffusion, and reaction rate at a microscale that cannot be obtained using conventional analytical tools. However, their applications have been primarily limited to understanding mass transport dynamics and kinetics in biofilms. With the advancement of sensor fabrication and utilization techniques, their potential applications can surpass conventional biofilm processes. In this dissertation, microsensors were utilized to elucidate mass transport and chemical reactions in multidisciplinary research areas including biological nutrient uptake, oily wastewater treatment, photocatalytic disinfection, and plant disease management, which have not yet explored using this emerging technology. The main objective of this work was to develop novel microsensors and use them for better understanding various natural and engineered aquatic systems. These include; 1) investigating localized photo-aeration and algal-bacterial symbiotic interaction in an advanced algal-bacterial biofilm process for nutrient removal from wastewater, 2) characterizing oil-in-water emulsions for better understanding bilge water emulsion stability, 3) evaluating sun-light driven photocatalytic reactions using a novel MoS2 nanofilm for water disinfection and microcystins-LR removal, 4) developing a zinc ion-selective microsensor and applying them for monitoring the transport of zinc in citrus trees, and 5) integrating heavy metal detection using anodic stripping voltammetry (ASV) in a microelectrode platform for plant applications.
Identifier: CFE0007565 (IID), ucf:52576 (fedora)
Note(s): 2018-08-01
Ph.D.
Engineering and Computer Science, Civil, Environmental and Construction Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): bilgewater -- citrus -- microalgae -- microsensor -- microelectrode -- mass transport -- wastewater
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007565
Restrictions on Access: public 2019-02-15
Host Institution: UCF

In Collections