You are here

Decentralized Consensus-based Control Allocation For Some Dynamical Systems

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
In this dissertation, three separate studies, wherein techniques from graph theory and consensus control are used to address control allocation problems, are presented. In the first study, a decentralized allocator is presented for synthetic jet actuators and control surfaces onboard a small unmanned aerial vehicle to cooperatively generate desired aerodynamic moments. First order linear dynamics are assumed for both the synthetic jet actuators and control surfaces. A weighted consensus algorithm with limited feedback is used for the aerodynamic moment contribution allocator considering constraints. In the second study, the same allocation problem as in the first study is considered, but the actuator dynamics are now assumed to behave according to second order nonlinear dynamics. In the third study, a spray allocator is presented for an array of nozzles used to cool a large heated surface in order to address the local disagreement in surface temperature within sprayed sections. Within each study, the stability of each system is proven, and the performance of each allocator is demonstrated via simulations.
Title: Decentralized Consensus-based Control Allocation For Some Dynamical Systems.
20 views
9 downloads
Name(s): Mark, August, Author
Xu, Yunjun, Committee Chair
Gou, Jihua, Committee Member
Lin, Kuo-Chi, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2019
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this dissertation, three separate studies, wherein techniques from graph theory and consensus control are used to address control allocation problems, are presented. In the first study, a decentralized allocator is presented for synthetic jet actuators and control surfaces onboard a small unmanned aerial vehicle to cooperatively generate desired aerodynamic moments. First order linear dynamics are assumed for both the synthetic jet actuators and control surfaces. A weighted consensus algorithm with limited feedback is used for the aerodynamic moment contribution allocator considering constraints. In the second study, the same allocation problem as in the first study is considered, but the actuator dynamics are now assumed to behave according to second order nonlinear dynamics. In the third study, a spray allocator is presented for an array of nozzles used to cool a large heated surface in order to address the local disagreement in surface temperature within sprayed sections. Within each study, the stability of each system is proven, and the performance of each allocator is demonstrated via simulations.
Identifier: CFE0007496 (IID), ucf:52636 (fedora)
Note(s): 2019-05-01
Ph.D.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Control Allocation -- Consensus -- Spray Cooling -- SUAS
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007496
Restrictions on Access: campus 2022-05-15
Host Institution: UCF

In Collections