You are here

Classifying and Predicting Walking Speed From Electroencephalography Data

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Electroencephalography (EEG) non-invasively records electrocortical activity and can be used to understand how the brain functions to control movements and walking. Studies have shown that electrocortical dynamics are coupled with the gait cycle and change when walking at different speeds. Thus, EEG signals likely contain information regarding walking speed that could potentially be used to predict walking speed using just EEG signals recorded during walking. The purpose of this study was to determine whether walking speed could be predicted from EEG recorded as subjects walked on a treadmill with a range of speeds (0.5 m/s, 0.75 m/s, 1.0 m/s, 1.25 m/s, and self-paced). We first applied spatial Independent Component Analysis (sICA) to reduce temporal dimensionality and then used current popular classification methods: Bagging, Boosting, Random Forest, Na(&)#239;ve Bayes, Logistic Regression, and Support Vector Machines with a linear and radial basis function kernel. We evaluated the precision, sensitivity, and specificity of each classifier. Logistic regression had the highest overall performance (76.6 +/- 13.9%), and had the highest precision (86.3 +/- 11.7%) and sensitivity (88.7 +/- 8.7%). The Support Vector Machine with a radial basis function kernel had the highest specificity (60.7 +/- 39.1%). These overall performance values are relatively good since the EEG data had only been high-pass filtered with a 1 Hz cutoff frequency and no extensive cleaning methods were performed. All of the classifiers had an overall performance of at least 68% except for the Support Vector Machine with a linear kernel, which had an overall performance of 55.4%. These results suggest that applying spatial Independent Component Analysis to reduce temporal dimensionality of EEG signals does not significantly impair the classification of walking speed using EEG and that walking speeds can be predicted from EEG data.
Title: Classifying and Predicting Walking Speed From Electroencephalography Data.
56 views
23 downloads
Name(s): Rahrooh, Allen, Author
Huang, Helen, Committee Chair
Huang, Hsin-Hsiung, Committee Member
Samsam, Mohtashem, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2019
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Electroencephalography (EEG) non-invasively records electrocortical activity and can be used to understand how the brain functions to control movements and walking. Studies have shown that electrocortical dynamics are coupled with the gait cycle and change when walking at different speeds. Thus, EEG signals likely contain information regarding walking speed that could potentially be used to predict walking speed using just EEG signals recorded during walking. The purpose of this study was to determine whether walking speed could be predicted from EEG recorded as subjects walked on a treadmill with a range of speeds (0.5 m/s, 0.75 m/s, 1.0 m/s, 1.25 m/s, and self-paced). We first applied spatial Independent Component Analysis (sICA) to reduce temporal dimensionality and then used current popular classification methods: Bagging, Boosting, Random Forest, Na(&)#239;ve Bayes, Logistic Regression, and Support Vector Machines with a linear and radial basis function kernel. We evaluated the precision, sensitivity, and specificity of each classifier. Logistic regression had the highest overall performance (76.6 +/- 13.9%), and had the highest precision (86.3 +/- 11.7%) and sensitivity (88.7 +/- 8.7%). The Support Vector Machine with a radial basis function kernel had the highest specificity (60.7 +/- 39.1%). These overall performance values are relatively good since the EEG data had only been high-pass filtered with a 1 Hz cutoff frequency and no extensive cleaning methods were performed. All of the classifiers had an overall performance of at least 68% except for the Support Vector Machine with a linear kernel, which had an overall performance of 55.4%. These results suggest that applying spatial Independent Component Analysis to reduce temporal dimensionality of EEG signals does not significantly impair the classification of walking speed using EEG and that walking speeds can be predicted from EEG data.
Identifier: CFE0007517 (IID), ucf:52642 (fedora)
Note(s): 2019-05-01
M.S.
Engineering and Computer Science, Mechanical and Aerospace Engr
Masters
This record was generated from author submitted information.
Subject(s): Biomedical Engineering Statistical Classification
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007517
Restrictions on Access: public 2019-05-15
Host Institution: UCF

In Collections