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ABSTRACT

Electroencephalography (EEG) non-invasively records electrocortical activity and can be used to

understand how the brain functions to control movements and walking. Studies have shown that

electrocortical dynamics are coupled with the gait cycle and change when walking at different

speeds. Thus, EEG signals likely contain information regarding walking speed that could poten-

tially be used to predict walking speed using just EEG signals recorded during walking. The pur-

pose of this study was to determine whether walking speed could be predicted from EEG recorded

as subjects walked on a treadmill with a range of speeds (0.5 m/s, 0.75 m/s, 1.0 m/s, 1.25 m/s, and

self-paced). We first applied spatial Independent Component Analysis (sICA) to reduce temporal

dimensionality and then used current popular classification methods: Bagging, Boosting, Random

Forest, Naïve Bayes, Logistic Regression, and Support Vector Machines with a linear and radial

basis function kernel. We evaluated the precision, sensitivity, and specificity of each classifier.

Logistic regression had the highest overall performance (76.6 +/- 13.9%), and had the highest pre-

cision (86.3 +/- 11.7%) and sensitivity (88.7 +/- 8.7%). The Support Vector Machine with a radial

basis function kernel had the highest specificity (60.7 +/- 39.1%). These overall performance val-

ues are relatively good since the EEG data had only been high-pass filtered with a 1 Hz cutoff

frequency and no extensive cleaning methods were performed. All of the classifiers had an overall

performance of at least 68% except for the Support Vector Machine with a linear kernel, which had

an overall performance of 55.4%. These results suggest that applying spatial Independent Com-

ponent Analysis to reduce temporal dimensionality of EEG signals does not significantly impair

the classification of walking speed using EEG and that walking speeds can be predicted from EEG

data.
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CHAPTER 1: INTRODUCTION

1.1 Electroencephalography (EEG)

Electroencephalography (EEG) has been studied by past researchers [Edla et al. (2018)] [Sun

(2007)] to understand how the brain works during various tasks like taking a test, walking, and

sleeping. An EEG signal is an electrical potential that is recorded non-invasively from the human

scalp area. The EEG signal is originated from the brain, which are made of billions of cells called

neurons. These neurons have axons which release neurotransmitters. The dendrites of the neurons

receive these neurotransmitters from the axons of other neurons, which causes a electrical polarity

change. This polarity change is the electrical potential that the EEG is recording from the human

scalp area in volts. The neurotransmitters can be activated from various activities such as taking

a test, walking, and sleeping. When a person is taking a test they have to constantly use different

areas of the brain to answer the questions correctly, which inhibits more brain activity then say

walking were the person is at a constant speed and is not answering questions.

Due to the nature of the EEG signal it contains a mixture of signals from eye movement (ECoG),

muscle activity (EMG), brain activity (EEG), and heart activity (ECG). The mixture of signals

makes EEG hard to collect and analyze. Past researchers [Lin et al. (2008)] [Artoni et al. (2018)]

have looked at recording EEG mostly during non-movement tasks where the subject sits still and

completes a task to minimize the amount of EEG movement artifact. Recently researchers have

been looking into collecting mobile EEG data [Makeig (2009)], but with the mixture of signals it

is very challenging to separate out the brain (cortical) activity from the non-cortical signals like

muscle, cardiac, eye, and any other surrounding noise that would be recorded with the EEG unlike

non-movement tasks. There has yet been a definitive solution for removing movement artifact from

mobile EEG data [Oliverira et al. (2016)] [Nordin et al. (2018)].
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To attempt to solve the challenge of separating out EEG signals past researchers have used a tem-

poral Independent Component Analysis [Calhoun et al. (2003)] approach, which seeks to separate

out the EEG channels into different signals like movement artifact, EMG, EOG, and ECoG. Other

researchers have attempted to use a spatial Independent Component Analysis (2019, Huang) which

reduces the temporal dimensionality of the EEG data. Researchers also believe that there is a corre-

lation between gait cycle and cortical activity [Gwin et al. (2010)] [Oliverira et al. (2016)]. As the

person is walking there is less brain activity as to when a person is running [Gwin et al. (2010)].

With this knowledge clinicians could potentially diagnosis diseases like Parkinson’s, where the

neurons in the brain break down or die and affects motor control like loss of balance and freezing

of gait [Handojoseno et al. (2015)]. Studies have shown there are EEG differences in subjects with

Parkinson’s and subjects without Parkinson’s [Handojoseno et al. (2015)] [Cozac et al. (2016)].

Mobile EEG [Elda et al. (2018)] could help scientists and clinicians better understand how the

brain functions at different walking speeds for healthy younger, older adults, and neurological

populations such as Parkinson’s disease.

1.2 Dimension Reduction

EEG data can have a high temporal dimension. To reduce the temporal dimension previous re-

searchers have implemented a principal component analysis (PCA) [Artoni et al. (2018)] and

independent component analysis (ICA) [Gwin et al. (2010)] [Snyder et al. (2015)]. PCA seeks

to find the uncorrelated sources [Holland (2018)], where as ICA seeks to find the independent

source components [Karhunen (2001)]. These dimension reduction methods can be used to extract

various EEG sources such as movement artifact, ECoG, EMG, and ECG.
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1.2.1 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical and computational method for dimension

reduction and extracting source signals. The assumptions that ICA uses are that data variables are

either linear or non-linear mixtures of latent variables. The latent variables are variables that are

not directly observed and are assumed to be mutually independent and non-gaussian. These latent

variables are the independent components or sources [Karhunen et al. (2001)]. Using ICA the

independent components can be extracted.

The ICA is derived by X = AS where X = (X1, ...,Xm)
T is the m x 1 continuous-valued random

vector of the observable signals, A = ai j is the unknown constant (non random) and invertible

square matrix mixing matrix of size m x m and S = (S1, ...,Sm)
T is the m x 1 continuous-valued

random vector of the m unknown source signals to be recovered [Karhunen et al. (2001)]

ICA is a powerful method to use for EEG data because ICA can help extract and separate source

signals such as movement artifact, muscle activity (electromyography, EMG), and cortical activity

[Oliveira et al. (2016)]. How well ICA can extract and separate the source signals depends on the

quality of the measurement of the observable data signals, the characteristics of the sources, and

specifics of the mixture of sources.

The two types of ICA are temporal and spatial Independent Component Analysis (tICA & sICA).

tICA assumes independence in time so that the original voices from the "cocktail" party analogy

can be extracted from the mixture. This method has been shown to have the ability to partially

separate motion artifact from electrophysical signals [Snyder et al. (2015)]. In contrast, sICA

assumes spatially independent components where the high EEG temporal dimension is reduced

[Huang et al. (2019)].
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1.3 Statistical Classification Methods

The classification methods after dimension reduction that we used in this thesis are Bagging, Boost-

ing, Random Forest, Logistic Regression, Naive Bayes, and Support Vector Machines with linear

and radial basis function kernels. For this thesis the input variable was the EEG 128 channel data

from each subject and the output variable were the corresponding speeds (0.5 m/s, 0.75 m/s, 1.0

m/s, 1.25 m/s and a self-paced speed). A self-paced speed is where the treadmill will speed up if

the subject is going too fast and slow down if the subject is going too slow to maintain the subjects

position in the center of the treadmill.

1.4 Ensemble Model

Ensemble methods are where multiple learning algorithms are used to obtain better predictive per-

formance than using a solo learning algorithm. Ensemble methods consist of the models: bagging

(bootstrap aggregation), boosting (adaboost), and random forest.

1.4.1 Bagging Model

The bagging model is an abbreviation for bootstrapping aggregation, which creates multiple repli-

cates of data from the training data set. Bootstrapping is the process of taking random samples

from the training set until n number of bags are generated. Once the data is put into a bag the

data is then put back in the original training data set, which can result in replicate data points in

other bags. Once n bags are generated classification tress are used to calculate a classification rate.

These classification rates are then aggregated, which means to group the classification rates and

take an equally weighted average. Then a majority vote is determined for a final prediction. Figure
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1.1 shows the representation of the bagging model.

Figure 1.1: Bagging visual representation the bag numbers represent the sampling of the training
data set where 80% is the training data set and 20% is the testing data set.

1.4.2 Boosting Model

The boosting model uses misclassified data points to boost the accuracy of the total model. The

boosting algorithm also known as adaboost (adapative boosting) takes a random subset of train-

ing data but instead of putting the data back into the training data it puts higher weights on the

misclassified points. This is repeated until n subsets are generated. After n subsets are gener-

ated a weighted average is taken instead of equally weighted average as the bagging model does.

This weighted average boosts the overall classification and prediction rate. Figure 1.2 shows the

representation of the boosting model.
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Figure 1.2: Boosting visual representation where unlike in figure 1.1 boosting applies higher
weights towards the better performing classifications and misclassified data to boost the classi-
fication rate.

1.4.3 Random Forest Model

The random forest model is an ensemble of classification trees used for classification and prediction

of the training data set. A decision tree breaks down the data into smaller subsets until a "stump"

is reached in the tree. Hence the name random forest means multiple trees, which makes a forest.

The classification rates are then aggregated just like in the bagging model and a final prediction is

calculated. Figure 1.3 shows the representation of the random forest model.
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1.5 Logistic Regression Model

A logistic regression model estimates the correlation between the dependent (target) and indepen-

dent variables (predictor) for numerical data. Logistic Regression categorizes into two models

being: binomial and multinomial logistic regression. Binomial is when there are only two de-

pendent numerical variables like Age/Weight. Multinomial Logistic Regression is when there are

more then two dependent numerical variables like Age/Weight/Sex. Figure 1.4 shows an example

of a fitted logistic regression model over a simulated data set.
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Figure 1.4: Simulated data representing a logistic regression model over the data set.
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1.6 Probability Model

The Naive Bayes model is derived from Bayes’ Rule (Bayes’ Theorem or Bayes’ Law) P(Y =

j|X = x0). Bayes’ Rule assumes conditional probability when Y = j there is a given observed

predictor vector x0 [James et al. (2013)]. This is known as the Bayes’ classifier. The Bayes

Decision Boundary as shown in figure 1.6 represents the probability classification of each group.

The classification is then based on the Bayes Decision Boundary with observations either falling

in the red, green or blue category.

Figure 1.5: Simulated Data separated into three groups: blue, green, and red. The black line
represents the Bayes Decision Boundary where the classification is separated between the three
groups. The blue grid area were the classifier predicts as the blue area, the green grid area were
the classifier predicts as the green group and the red grid area were the classifier predicts as the red
group.
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1.7 Hyper Plane Method

The last statistical classification approach uses a hyper plane approach, which is known as a Sup-

port Vector Machine. Support Vector Machines [Tong et al. (2000)] [Vapnik et al. (1982)] have

been used in previous research studies for data classification [Huang et al. (2019)] [(Guyon et al.

(2002)]. The support vector machine is a discriminative classifier that is a hyper plane to separate

the data and predict the classification rate. A hyper plane separates the data by a maximal margin

as shown in the left graph of figure 1.6. Given a training data set {x1 · · · xn} in the space of X ⊆

Rd also with the training data set is a set of data labels {y1 · · · yn} where yi ∈ {−1,1}.

As shown in figure 1.6 the vectors formed from the data set are either labeled -1 or 1 and the

vectors that lie closest to the to the hyper plane are known as the support vectors, which are used

for the classification. Support vector machines either use an inductive or transductive hyper plane

approach where the inductive hyper plane builds a decision based solely on the training data set,

where as the transductive hyper plane builds a decision based on the training and testing data sets

[Kasabov et al. (2003)].

With a support vector machine a kernel function is used. A kernel is a similarity function where it

quantifies the similarity between two objects and is often used for pattern analysis. For example,

for EEG data a kernel would take a voltage value at a giving time and then quantify it with a

cognitive task like level ground walking to predict the speed of the subject. The most common

kernels used for support vector machines are the linear and radial basis function kernels. The

linear kernel is simple the inner product of the two observations K(xi,xi′) =
p
∑
j=1

xi jxi′ j, and best

used when the data can be linearly separated. The radial basis function kernel uses the tuned

parameters: γ & cost (c) for cross-fold validation K(xi,xi′) = exp(−γ

p
∑
j=1

(xi j− xi′ j)
2), and is best

used when the data can not be linearly separated. The γ parameter controls the kernel (decision

boundary/hyperplane). A high γ can create a decision boundary with a low margin, but can overfit
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the data. A low γ can create a decision boundary with a high margin, but can misclassify points

that are within the margin. The c parameter determines the cost (penalty) of misclassification of the

training data points. A high c value gives a high penalty towards misclassified points and a smaller

margin is used for classification. For a low c value it gives a low penalty towards the misclassified

points and a larger margin is used for classification.

Figure 1.6: Simulated data with a hyper plane separating the data and the closest points are the
support vectors.

1.8 Purpose

The purpose of this thesis was to develop a procedure to classify and predict walking speed from

EEG data recorded as subjects walked on a treadmill using a range of speeds. For the first part of

the procedure, we used a spatial Independent Component Analysis (sICA) to reduce the temporal
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dimension of the EEG data. Then, we trained our training data set using seven statistical classifica-

tion methods to the temporal reduced EEG data: Bagging, Boosting, Random Forest, Naïve Bayes,

Logistic Regression, and Support Vector Machines with a linear and radial basis function kernels.

After the classification methods we generated confusion tables using the testing data set, and calcu-

lated the precision, sensitivity, and specificity to measure each of the classification methods overall

performance.
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CHAPTER 2: METHODOLOGY

2.1 EEG Data Collection

We used EEG data recorded using a 128-channel system (BioSemi, ActiveTwo, Amsterdam, Nether-

lands) as healthy young adults (n = 7, 18 - 35 years old) walked on a treadmill using five different

walking speeds, 0.5 m/s, 0.75 m/s, 1.0 m/s, 1.25 m/s, and a self-paced speed. Each EEG channel

was filled with a non conductive gel and the electrodes were placed accordingly based on cortical

brain location. The dimension reduction and classification methodology is adapted from previous

work done by (2019, Huang), where they applied sICA and classification models to a 256-channel

EEG artifact data.

2.2 Pre-Processing EEG Data

The raw EEG data was then preprocessed into MATLAB and a 1 Hertz (Hz) high pass filter was

applied. The data was then converted into text files (.csv) for dimension reduction and classifica-

tion modeling in R studio. The data was imported into R studio with each trial being five min-

utes (300 seconds) with a 512 Hz sampling rate per second, which on average was 150,000 time

samples. This segment was then cut down to three 50,000 temporal point segments [0:50,000,

50,000:100,000, 100,000:150,00], and the 2nd segment [50,000:100,000] was chosen to omit the

treadmill speeding up and the subject adjusting to the speed. This data segment was further cut

into five 10,000 temporal points per subject per speed with an added speed column with 0.5 m/s ,

0.75 m/s , 1.0 m/s , 1.25 m/s, and Self-Paced for a total of 25 data sets per subject.
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Figure 2.1: Breakdown of the EEG Data Set (2019, Huang).
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2.3 Data Preparation

To perform a five-fold analysis we chose to use a training and testing data sets. The training data

set is used to train the model. The testing data set is used to validate the results of the prediction

and classification from the training data set. The training set consisted of 515 (103 per speed) EEG

channels per each subject and 125 (25 per speed) EEG channels for the testing set. A sICA was

performed using eegica from the package eegkit [Helwig (2015)] the training data set was reduced

from 50,000 temporal points to 25 temporal points per subject for a matrix of dimensions 515 x

25. sICA was not used on the testing set because the source (S) matrix was found by doing the

matrix cross product tcrossprod using the remaining 125 EEG channels after randomly chosen 515

EEG channels as the training data set before sICA, and the W matrix extracted after sICA from

the training data set. The W matrix is chosen to maximize the negentropy, measure of distance to

normality, approximation under the constraints that W is an orthonormal matrix [Helwig (2015)].

The matrix cross product was then computed to obtain the source matrix for the testing data set.

This resulted in the testing data set to be reduced from a dimension of 125 x 50,000 to 125 x 25.

After applying sICA the EEG data is processed through the following classifiers: Bagging, Boost-

ing, Random Forest, Naïve Bayes, Logistic Regression, and Support Vector Machine with Linear

and Radial Basis Function (RBF) kernels.
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Figure 2.2: Breakdown of the classification methods (2019, Huang).
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First we train the training data using the bagging classification model using the packages tree

[Ripley (2018)] and randomForest (2012, Laiw). Next we trained the data using the boosting clas-

sification model, which was ran using the package adabag [Cortes et al. (2018)], which contains

the boosting command. Next we trained the data with the random forest classification model,

which utilizes the packages tree [Ripley (2018)] and randomForest [Liaw et al. (2018)]. Next

we trained data using the naive bayes classification model with the package naivebayes [Majka

(2017)]. Next we trained the data using the logistic regression classification model with the gen-

eral linear model (glm) command and the package nnet [Venables et al. (2016)], which contains the

multinom command. Finally, we trained the data using the support vector machine classification

model the packages ISLR [Gareth et al. (2000)] and e1071 [Meyer et al. (2017)] were utilized.

The support vector machine classifier has two methods one being with a linear kernel with cost

(c) being set at 0.01, and the other being a radial basis function kernel with c set at 0.5 and γ set

at 0.1. For the support vector machine models the c and γ values can be tuned to obtain various

classification rates. After the training data was trained using the seven classifiers we generated 5 x

5 confusion tables using the testing data set.

From these confusion tables we calculated three statistical parameters that measure the overall

performance of each confusion table. These parameters are precision, sensitivity, and specificity

which are calculated by equation 2.1, 2.2, & 2.3.

Precision =
True Positives

Actual Positives
(2.1)

Sensitivity =
True Positives

True Positives+False Negatives
(2.2)

Speci f icity =
True Negatives

True Negatives+False Positives
(2.3)
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Figure 2.3: 2 x 2 Confusion Table of True & False Positives and True & False Negatives.

As shown in figure 2.3 is a 2 x 2 confusion table with True Positive, False Positive, False Negative,

& True Negative with the predicted data as the rows and actual data as the columns. For a true

positive the outcome is where the model correctly predicts the positive class. For a true negative the

outcome is where the model correctly predicts the negative class. For a false positive the outcome

is where the model incorrectly predicts the negative class. For a false negative the outcome is where

the model incorrectly predicts the negative class. After we calculated the precision, sensitivity, and

specificity for all subjects we calculated the average over all the subjects and generated an average

confusion table and an average statistical parameter bar plot with positive standard deviation bars.
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CHAPTER 3: RESULTS

3.1 Classification Results

The confusion tables show how well each classifier predicted the subjects speed using the testing

data with 125 (25 per speed) EEG channels to test how well the training data classified. The pre-

dicted speeds are the rows and the actual speeds are the columns. Figure 3.1 shows the confusion

table for subject 1 for all the classification methods. The diagonal components (True Positives) of

each confusion table represent how well the the classification method performed and a color scale

is used with 25 being the darkest (best) and 0 being the lowest (worst). The values surrounding the

diagonal are misclassified predictions (True Negatives, False Negatives, & False Positives), and

for subject 1 there was minimum misclassification with the highest misclassified prediction being

4 points for the support vector machine with a linear kernel. Figure 3.2 shows the mean confusion

tables for all subjects and classifiers. The same color scale is used as figure 3.1 with 25 being

the best classification and 0 being the worst classification. Decimal values are given for figure

3.2 because it is an average taken over 7 subjects unlike the individual subjects were an integer

value is given. The remaining of the subjects confusion tables can be found in APPENDIX A:

SUPPLEMENTARY DATA.

From the confusion tables we calculated precision, sensitivity, and specificity to measure the clas-

sification performance per each classification method. Figure 3.3 shows the precision, sensitivity,

and specificity for subject 1 and all subjects. For subject 1 bagging, random forest, and support

vector machines with a linear and radial basis function kernels had the highest precision (96%)

followed by naive bayes (92%), boosting (88%), and logistic regression (68%). Bagging, boost-

ing, random forest, naive bayes, and a support vector machine with a radial basis function kernel

showed the highest sensitivity (100%) followed by logistic regression (85%), and support vec-
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tor machine with a linear kernel (75%). For specificity bagging had the highest value (92.31%)

followed by random forest, support vector machine with a radial basis function kernel (88.89%),

naive bayes (88.46%), boosting (75.86%), support vector machine with linear kernel (63.16%),

and logistic regression (39.53%). The remaining of the subjects classification performance values

can be found in APPENDIX A: SUPPLEMENTARY DATA.

For the classification performance average across subjects the logistic regression showed the best

classification performance for precision (86.3% + 11.7%) followed by naive bayes (82.3% +/-

36.4%), support vector machine with a radial basis function kernel (75.4% +/- 39.1%), random

forest (72% +/- 41.1%), bagging (68% +/- 42%), boosting (66.3% +/- 41.4%), and support vector

machine with a linear kernel (59.4% +/- 46.1%). The logistic regression also performed best for

sensitivity (88.7% +/- 8.7%) followed by support vector machine with a radial basis function kernel

(84.5% +/- 27.4%), boosting (82.1% +/- 36.6% +/- 36.6%), bagging (80.2% +/- 36.5%), random

forest (66.3% +/- 46%), support vector machine with a linear kernel (63.2% +/- 44.4%), and naive

bayes (62.1% +/- 45.8%). The support vector machine with a radial basis function kernel had

the best specificity (60.7% +/- 39%) followed by random forest (60.1% +/- 38.8 %), naive bayes

(58.8% + 36.5%), bagging (57.1% + 39.5%), boosting (55% +/- 40.4%), logistic regression (54.8%

+ 21.3 %), and support vector machine with a linear kernel (43.4% + 36.1%).
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 24 0 0 0 0

Speed 2 0 25 0 1 0

Speed 3 0 0 25 0 0

Speed 4 0 0 0 24 0

Speed 5 1 0 0 0 25

Speed 1 22 0 0 0 0

Speed 2 0 25 0 1 0 0

Speed 3 3 0 24 0 0 1

Speed 4 0 0 0 23 0 2

Speed 5 0 0 1 0 24 3

4

Speed 1 24 0 0 0 0 5

Speed 2 0 24 0 1 0 6

Speed 3 0 0 25 0 0 7

Speed 4 0 0 0 24 0 8

Speed 5 1 1 0 0 25 9

10

Speed 1 23 0 0 0 0 11

Speed 2 1 25 0 1 0 12

Speed 3 0 0 25 0 0 13

Speed 4 0 0 0 24 0 14

Speed 5 1 0 0 0 25 15

16

Speed 1 17 3 0 0 0 17

Speed 2 0 23 0 0 0 18

Speed 3 0 0 25 0 0 19

Speed 4 2 9 0 9 0 20

Speed 5 1 3 0 0 25 21

22

Speed 1 24 1 4 3 0 23

Speed 2 0 24 1 4 0 24

Speed 3 0 0 20 0 0 25

Speed 4 1 0 0 18 0

Speed 5 0 0 0 0 25

Speed 1 24 0 0 0 0

Speed 2 0 24 0 1 0

Speed 3 0 0 25 0 0

Speed 4 0 0 0 24 0

Speed 5 1 1 0 0 25

Linear SVM
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Subject 1
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Figure 3.1: Confusion Tables for Subject 1.
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 17.00 0.14 0.86 0.00 1.14

Speed 2 3.29 21.14 2.14 1.57 2.57
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Speed 5 0.29 0.14 0.00 0.00 18.57

0
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Speed 5 0.00 0.00 0.43 0.14 17.57 5

6
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Speed 2 3.43 21.29 2.57 1.86 3.29 8
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Speed 4 3.86 4.00 3.14 21.86 3.29 16
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Speed 2 2.00 19.86 1.14 1.14 0.57 20

Speed 3 1.14 1.86 20.71 1.00 0.29 21

Speed 4 1.57 2.86 0.14 19.43 0.29 22

Speed 5 0.71 1.29 1.29 0.86 21.43 23

24

Speed 1 14.86 0.57 0.57 0.43 0.29 25

Speed 2 3.71 19.86 5.00 4.29 3.86
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Figure 3.2: Mean Confusion Table for All Subjects.
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CHAPTER 4: DISCUSSION & CONCLUSIONS

In this thesis we sought to reduce the temporal dimension of EEG data recorded while walking.

We applied a spatial Independent Component Analysis to reduce temporal dimensionality, and

then applied seven classification methods being Bagging, Boosting, Random Forest, Naive Bayes,

Logistic Regression, and Support Vector Machines with a linear and radial basis function kernel.

After the training data was trained through the seven classifiers we generated the confusion tables

and corresponding precision, sensitivity, and specificity values. We found that the logistic regres-

sion classifier performed best for precision and sensitivity and the support vector machine with a

radial basis function kernel classifier performed best for specificity.

The main finding was that gait speeds could be predicted from EEG data with greater then 55.4%

performance. This performance rate is low since for some of the confusion tables 0 out of the

25 EEG channels used for the testing data set were not classified at all as the actual speed. This

resulted in low mean and high standard deviation values for all the classifiers, which suggests that

some subjects had better quality data collections. This further demonstrates that EEG data can be

classified to determine different types of activities such as sitting still while completing a task and

dynamic activities like walking and running. This implies that only using a 1 Hz high pass filter

does not significantly impair classification of walking using EEG and that walking speeds can be

predicted from EEG data. Previous papers have implemented each of the seven classification meth-

ods. For bagging and boosting the abstract from the conference Multiple Classifier Systems [Sun

(2007)] looked at classifying EEG signals during three mental imagery tasks being: the imagina-

tion of repetitive self-paced left hand movements, imagination of repetitive self-paced right hand

movements,and generation of different words beginning with the same random letter. For bagging

they got an overall accuracy of 56.31% with a standard deviation of 12.60%. For boosting they got

an overall accuracy of 55.49% with a standard deviation of 11.96%. For random forest the paper
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[Edla et al. (2018)] looked at the classification of EEG data for different mental states being: solv-

ing a mathematics problem (concentration) and a period of mediation (resting) with the subjects

eyes closed. They found that the random forest classifier had a precision of 80% for concentration

and 70% for the resting phase. For the naive bayes classification model the paper [Machado et al.

(2013)] looked at EEG data during imaginary movement being the movement of both the right and

left hand, which is similar to the imaginary tasks in the paper [Sun (2007]. They found the naive

bayes had an overall performance of 78.57%. For the logistic regression model the paper [Subasi

et al. (2005)] looked at the classification of EEG data from epileptic and normal subjects. They

found the logistic regression model had an overall specificity of 90.3% and sensitivity of 89.2%.

For the support vector machine classification model the paper [Lin et al. (2008)] looked at the

classification of EEG data during emotional music listening and they got an overall accuracy of

92.73% with a standard deviation of 2.09%. These findings show that it is possible to classify EEG

during different imagery, mental, dynamic, and static tasks.

We found logistic regression performed best for the precision and sensitivity with mean values of

86.3% +/- 11.7% and 88.7& +/- 8.7%. Also we found the support vector machine with a radial

basis function kernel had the best specificity with values of 60.7 +/- 39.1%. The logistic regression

outperformed the other classification methods because it does not have to be tuned like the support

vector machine with a linear or radial basis function kernel as shown for subject 4 (figure A.5

& A.6), where the support vector machines had a very low performance, since c and γ are tuned

parameters. As for the support vector machine with a radial basis function kernel performing

the best for specificity the parameters γ and c can be tuned accordingly per each subject, which

improves the overall performance.

Spatial Independent Component Analysis is used to reduce temporal dimensionality to preserve

the spatial dimensions, which contain valuable cortical activity. The paper [Huang et al. (2019)]

used a spatial Independent Component Analysis on EEG movement artifact data in attempt to
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classify different speeds 0.4, 0.8, 1.2, and 1.6 m/s. We replicated their method by using a spatial

Independent Component Analysis, but on EEG data while a subject was walking at level ground

at 0.5 m/s, 0.75 m/s, 1.0 m/s, 1.25 m/s, and a self-paced speed. We also used naive bayes, logistic

regression, and a support vector machine with a linear kernel like [Huang et al. (2019)] used.

Both of our classification performance values showed that logistic regression performed the best,

but the classification of EEG movement artifact performed better then the classification of EEG.

We believe the actual EEG performed less because it contains a mixture of artifact signals such as

EKG, EMG, and ECoG. In contrast the movement artifact EEG that [Huang et al. (2019)] analyzed

contains less non-movement artifact.

Future work will aim at developing and implementing an online algorithm to predict overground

walking speed in real-time, which could be used to enhance brain-machine interface gait-oriented

devices. This online algorithm will use a moving average function to predict and forecast the speed

as the person is doing a dynamic task like walking. Also we can apply more pre-processing of the

EEG data, apply more classification methods, and tune the seven classification methods we used

to get a better overall performance.
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APPENDIX A: SUPPLEMENTARY DATA
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 25 0 0 0 0

Speed 2 0 25 1 0 0

Speed 3 0 0 24 0 0

Speed 4 0 0 0 25 0

Speed 5 0 0 0 0 25

Speed 1 25 0 0 0 0

Speed 2 0 25 1 0 0 0

Speed 3 0 0 24 0 0 1

Speed 4 0 0 0 25 0 2

Speed 5 0 0 0 0 25 3

4

Speed 1 25 0 0 0 0 5

Speed 2 0 25 0 0 0 6

Speed 3 0 0 24 0 0 7

Speed 4 0 0 1 25 0 8

Speed 5 0 0 0 0 25 9

10

Speed 1 25 0 2 0 0 11

Speed 2 0 25 1 0 0 12

Speed 3 0 0 22 1 0 13

Speed 4 0 0 0 24 0 14

Speed 5 0 0 0 0 25 15

16

Speed 1 25 0 0 0 0 17

Speed 2 0 25 0 0 0 18

Speed 3 2 0 22 1 0 19

Speed 4 0 0 0 25 0 20

Speed 5 0 0 0 0 25 21

22

Speed 1 24 0 0 0 0 23

Speed 2 1 25 1 0 0 24

Speed 3 0 0 24 0 2 25

Speed 4 1 0 0 24 0

Speed 5 0 0 0 0 23

Speed 1 25 0 0 0 0

Speed 2 0 25 0 0 0

Speed 3 0 0 25 1 0

Speed 4 0 0 0 24 0

Speed 5 0 0 0 0 25

SVM RBF

Subject 2

Bagging

Predicited/Actual Speeds

Boosting

Random Forest

Naïve Bayes

Logistic Regression

Color Scale

Linear SVM

Figure A.1: Confusion Tables for Subject 2.
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Figure A.2: Precision, Sensitivity, and Specificity Values for Subject 2.
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 25 1 4 0 0

Speed 2 0 24 0 0 0

Speed 3 0 0 21 0 1

Speed 4 0 0 0 25 0

Speed 5 0 0 0 0 24

Speed 1 25 0 1 0 0

Speed 2 0 25 0 0 0 0

Speed 3 0 0 24 0 1 1

Speed 4 0 0 0 25 0 2

Speed 5 0 0 0 0 24 3

4

Speed 1 25 0 4 0 1 5

Speed 2 0 25 0 0 0 6

Speed 3 0 0 21 1 0 7

Speed 4 0 0 0 24 0 8

Speed 5 0 0 0 0 24 9

10

Speed 1 24 0 0 0 0 11

Speed 2 0 24 2 0 0 12

Speed 3 0 0 22 0 0 13

Speed 4 1 0 0 24 0 14

Speed 5 0 1 1 0 25 15

16

Speed 1 18 0 1 1 5 17

Speed 2 0 14 4 5 2 18

Speed 3 0 0 24 1 0 19

Speed 4 0 0 0 25 0 20

Speed 5 0 0 1 2 22 21

22

Speed 1 25 0 0 0 2 23

Speed 2 0 25 8 2 2 24

Speed 3 0 0 17 0 0 25

Speed 4 0 0 0 23 0

Speed 5 0 0 0 0 21

Speed 1 25 0 0 0 0

Speed 2 0 25 2 1 0

Speed 3 0 0 23 0 0

Speed 4 0 0 0 24 0

Speed 5 0 0 0 0 25

Subject 3
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Boosting

Random Forest

Naïve Bayes

Color Scale

Logistic Regression

Linear SVM

SVM RBF

Figure A.3: Confusion Tables for Subject 3.
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Figure A.4: Precision, Sensitivity, and Specificity Values for Subject 3.
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 0 0 0 0 3

Speed 2 23 20 14 10 18

Speed 3 0 0 4 1 0

Speed 4 2 5 7 14 3

Speed 5 0 0 0 0 1

Speed 1 0 0 0 0 1

Speed 2 13 18 8 7 16 0

Speed 3 12 6 15 10 7 1

Speed 4 0 1 0 7 0 2

Speed 5 0 0 2 1 1 3

4

Speed 1 0 0 0 0 0 5

Speed 2 24 23 18 12 23 6

Speed 3 1 1 6 1 0 7

Speed 4 0 1 1 12 0 8
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10

Speed 1 0 0 0 0 0 11

Speed 2 0 0 0 0 0 12

Speed 3 0 0 2 0 0 13

Speed 4 25 25 22 25 22 14
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Speed 1 23 2 0 0 0 17

Speed 2 0 25 0 0 0 18

Speed 3 2 13 8 0 2 19

Speed 4 8 10 0 5 2 20

Speed 5 0 6 0 0 19 21
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Speed 1 0 0 0 0 0 23

Speed 2 0 1 0 0 0 24

Speed 3 25 24 25 25 25 25

Speed 4 0 0 0 0 0

Speed 5 0 0 0 0 0

Speed 1 9 0 0 0 0

Speed 2 0 12 0 1 0

Speed 3 0 0 8 0 0

Speed 4 15 13 14 18 12

Speed 5 1 0 3 6 13

Color Scale

Subject 4
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Boosting
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Logistic Regression

Linear SVM
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Figure A.5: Confusion Tables for Subject 4.
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Figure A.6: Precision, Sensitivity, and Specificity Values for Subject 4.
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 6 0 0 0 0

Speed 2 0 5 0 0 0

Speed 3 18 18 25 6 10

Speed 4 0 1 0 19 3

Speed 5 1 1 0 0 12

Speed 1 6 0 0 0 1

Speed 2 0 3 0 0 1 0

Speed 3 8 10 10 0 10 1

Speed 4 11 12 15 25 9 2

Speed 5 0 0 0 0 5 3

4
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Speed 2 0 3 0 0 0 6
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Speed 4 1 1 0 23 0 20
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Speed 2 25 25 25 24 25 24
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Speed 4 0 0 0 1 0
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Figure A.7: Confusion Tables for Subject 5.
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Figure A.8: Precision, Sensitivity, and Specificity Values for Subject 5.
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Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Speed 1 25 0 2 0 5

Speed 2 0 25 0 0 0

Speed 3 0 0 23 0 0

Speed 4 0 0 0 25 1

Speed 5 0 0 0 0 19

Speed 1 25 0 0 0 2

Speed 2 0 24 1 0 0 0

Speed 3 0 1 24 0 2 1

Speed 4 0 0 0 25 1 2

Speed 5 0 0 0 0 20 3

4

Speed 1 25 0 2 0 4 5

Speed 2 0 25 0 0 0 6

Speed 3 0 0 23 0 0 7

Speed 4 0 0 0 25 1 8

Speed 5 0 0 0 0 20 9

10

Speed 1 24 0 2 0 0 11

Speed 2 1 25 0 0 0 12

Speed 3 0 0 23 0 0 13

Speed 4 0 0 0 25 0 14

Speed 5 0 0 0 0 25 15
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Speed 1 23 0 1 1 0 17

Speed 2 1 19 3 1 1 18

Speed 3 0 0 25 0 0 19

Speed 4 0 0 1 24 0 20
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Speed 2 0 24 0 0 0 24

Speed 3 0 0 22 0 0 25
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Figure A.9: Confusion Tables for Subject 6.
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Figure A.10: Precision, Sensitivity, and Specificity Values for Subject 6.

38



 

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5
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Speed 3 16 7 25 3 12 25

Speed 4 0 0 0 22 0

Speed 5 0 0 0 0 13

Speed 1 25 5 12 1 0

Speed 2 0 20 0 0 0

Speed 3 0 0 13 0 0

Speed 4 0 0 0 24 0

Speed 5 0 0 0 0 25

SVM RBF

Subject 7

Bagging

Predicted/Actual Speeds

Boosting

Random Forest

Naïve Bayes

Logistic Regression

Linear SVM

Color Scale

Figure A.11: Confusion Tables for Subject 7.
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Figure A.12: Precision, Sensitivity, and Specificity Values for Subject 7.
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