You are here
Characterization of Florida Landfills with Elevated Temperatures
- Date Issued:
- 2019
- Abstract/Description:
- The occurrence of elevated temperatures within landfills is a very challenging issue for landfill operators to detect and correct. Little is known regarding the causes of elevated temperatures (ETs) and the number of landfills currently operating under such conditions. Therefore, the goal of this research was to determine which landfills within Florida have been impacted by ETs, and to develop a more complete understanding of the factors that may lead to these landfills becoming elevated temperature landfills (ETLFs). Historical landfill gas wellhead data, waste deposition reports, and landfill site geometry were collected for 27 landfill cells through the FDEP OCULUS database and from landfill operators and owners. These data were evaluated to quantify the statistical characteristics that result in landfills becoming 'elevated' in temperature. Gas data included landfill gas temperatures, methane content, carbon dioxide content, and balance gas readings. Waste deposition information was gathered through solid waste reports for each landfill. Landfill site geometry was found through landfill permits, topographical landfill diagrams, and annual operation reports. Furthermore, landfill maps were created in ArcGIS to observe spatial distribution of ETs in landfills over time.Upon analysis of the landfill gas wellhead data, it was discovered that 74% of studied landfill cells had ET readings; regulatory limits specify a maximum allowable gas temperature of 55 degrees C (131 degrees F). When studying the solid waste reports, it was discovered that 37% of landfill cells contained MSW ash; of these cells, 90% of them are considered ETLFs. Regarding site geometry, it was found that ETLF cells are on-average double the site area and approximately 20 feet deeper than the average non-ETLF cell. Furthermore, results suggest that heat propagation in most landfills is limited; however, heat propagation is possible if gas wells are turned off for an extensive time period.
Title: | Characterization of Florida Landfills with Elevated Temperatures. |
37 views
11 downloads |
---|---|---|
Name(s): |
Joslyn, Ryan, Author Reinhart, Debra, Committee Chair Lee, Woo Hyoung, Committee Member Randall, Andrew, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2019 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | The occurrence of elevated temperatures within landfills is a very challenging issue for landfill operators to detect and correct. Little is known regarding the causes of elevated temperatures (ETs) and the number of landfills currently operating under such conditions. Therefore, the goal of this research was to determine which landfills within Florida have been impacted by ETs, and to develop a more complete understanding of the factors that may lead to these landfills becoming elevated temperature landfills (ETLFs). Historical landfill gas wellhead data, waste deposition reports, and landfill site geometry were collected for 27 landfill cells through the FDEP OCULUS database and from landfill operators and owners. These data were evaluated to quantify the statistical characteristics that result in landfills becoming 'elevated' in temperature. Gas data included landfill gas temperatures, methane content, carbon dioxide content, and balance gas readings. Waste deposition information was gathered through solid waste reports for each landfill. Landfill site geometry was found through landfill permits, topographical landfill diagrams, and annual operation reports. Furthermore, landfill maps were created in ArcGIS to observe spatial distribution of ETs in landfills over time.Upon analysis of the landfill gas wellhead data, it was discovered that 74% of studied landfill cells had ET readings; regulatory limits specify a maximum allowable gas temperature of 55 degrees C (131 degrees F). When studying the solid waste reports, it was discovered that 37% of landfill cells contained MSW ash; of these cells, 90% of them are considered ETLFs. Regarding site geometry, it was found that ETLF cells are on-average double the site area and approximately 20 feet deeper than the average non-ETLF cell. Furthermore, results suggest that heat propagation in most landfills is limited; however, heat propagation is possible if gas wells are turned off for an extensive time period. | |
Identifier: | CFE0007471 (IID), ucf:52690 (fedora) | |
Note(s): |
2019-05-01 M.S.Env.E. Engineering and Computer Science, Civil, Environmental and Construction Engineering Masters This record was generated from author submitted information. |
|
Subject(s): | Elevated Temperatures -- Elevated Temperature Landfill -- Landfill gas -- Landfill gas quality | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007471 | |
Restrictions on Access: | public 2019-05-15 | |
Host Institution: | UCF |