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ABSTRACT

We study multi-level optimization problem on energy system, transportation system and informa-

tion network. We use the concept of boundedly rational user equilibrium (BRUE) to predict the

behaviour of users in systems. By using multi-level optimization method with BRUE, we can

help to operate the system work in a more efficient way. Based on the introducing of model with

BRUE constraints, it will lead to the uncertainty to the optimization model. We generate the robust

optimization as the multi-level optimization model to consider for the pessimistic condition with

uncertainty. This dissertation mainly includes four projects. Three of them use the pricing strat-

egy as the first level optimization decision variable. In general, our models’ first level’s decision

variables are the measures that we can control, but the second level’s decision variables are users

behaviours that can only be restricted within BRUE with uncertainty.

Keywords: Boundedly Rational, Robust Optimization, Non-linear Programming, Linear Program-

ming
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CHAPTER 1: INTRODUCTION

Mathematical optimization is a widely used method in multiple areas. The general formulation of

optimization problem is shown as follows,

(GO):

min
x

f (x) (1.1)

s.t. g(x) � 0; (1.2)

Wherex is the decision variable inRn. f (x) is the relative objective function respect tox. g(x) is

the constraints withm dimension.

In this proposal, we also use the robust optimization model, which is a special case of the general

optimization problem. It has two levels for the optimization problem. The general formulation of

robust optimization is shown as follows,

(RO-GO):

max
b2B

min
x

f (b ;x) (1.3)

s.t. g(b ;x) � 0; (1.4)

x 2 X; (1.5)
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For this two-level optimize model.b is the �rst level decision variable.B is the feasible region for

b . X is the feasible region forx.

The application �elds of mathematical optimization include but not limit to the energy system,

transportation system and information network system. Four projects in this proposal are also in

these three areas.

The method robust optimization can be traced back to 1950s to the decision theory which use for

worst case analysis under uncertainty. Over the years, especially the recent two decades after the

work of Ben-Tal [11, 12], it is widely applied in the areas includes operations research, statistics,

control theory, �nance, logistics and computer science.

Stochastic optimization is also another method to deal with the problem with uncertainty. But it

can only be used when the probability of each scenario is known. But under many cases in the

real world we can not know these probability. Then the study of robust optimization becomes

extremely important.

In this dissertation, the concept of boundedly rational user equilibrium (BRUE) is introduced to

estimate the users' behaviour. BRUE model is proposed by Simon in year 1957 [77, 80, 81, 79],

which means for one individual, when the difference of the utilities of different options that the

individual can choose are below a level, this individual will regard the utilities of such different

options as the same. He or she may choose any options within that level as his or her �nal decisions.

The following is a mathematical constraint for BURE. We suppose one user in the system have

multiple choices, for choicei it has utilityU(i). With out loss of generality, we can set the choice

i� has the optimal utility value. Then BRUE tells us that for any choicei has the following property

will be deemed as the possible future choice for this user.

U(i) � r � U(i� ): (1.6)
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Wherer is called the bounded rationality coef�cient. And we must haver � 1 because of the

optimality of the choicei� .

Here in our model of the transportation system, the utility includes the travel time and the surplus

price. The concept of boundedly rational can be used in many �elds, such as the energy system

[96], psychology [44], military [69], transportation [58, 24, 56]and so on [70, 58, 36, 27].

The structure of this dissertation is that the �rst chapter is the introduction part of the whole dis-

sertation. The second to �ve chapter is the work for four projects. And the six chapter is the

conclusion.

The �rst project studies a new time-of-day pricing framework to reduce the Peak-To-Average ratio

in residential electricity usage while considering consumers' boundedly rational behaviors. Instead

of always choosing the optimal electricity consumption pro�les as described in traditional game

theory models, consumers tends to simply pick solutions that are acceptable in terms of cost or

preference in reality. To address this, this paper proposes a Boundedly Rational User Equilibrium

(BRUE) to model residential electricity consumption in smart grid with advanced metering infras-

tructure. Upon the BRUE models, this paper studies two pricing strategies, i.e., optimistic and

robust, to minimize the total system cost, via bilevel optimization models. In order to address the

computational dif�culty caused by the nonconexity of the lower level problem, this paper studies

three cutting plane methods, i.e., direct cutting-plane method, penalty-based cutting-plane method

and Lagrangian-dual-based cutting plane method. Due to the property of hidden convexity, the

Lagrangian dual method outperforms the other two methods. Numerical experiments show that by

introducing the time-of-day pricing, it can decrease the total cost of the system. The results also

suggest that the more users with �exible preferred time windows for electricity usage, the lower

total cost the system can achieve by pricing.

The second project gives a model for the static transportation path based problem. We suppose
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that all the users in the system will obey the bounded rational principle. In real world instances,

people will feel just �ne even if they do not reach the best utility they can achieve but only attain

a certain level. We propose totally four conditions for our static models with two of them having

the pricing strategy. By using the pricing strategy, the total time cost of the system can be reduced.

And we also have the robust optimization model by using the pricing strategy, we solve it by using

the column and constraint generation method. For transportation path based problem, it is also a

large scale problem because the number of pathes have the exponentially relation with the number

of acres in the system.

The third project talks about the social media platforms, which have become very popular for

people to share information and make new friends. By expanding their own connections to new

users in the social network, commercial users can greatly increase their in�uences leading to much

higher pro�ts. In order to optimize a information provider's network connections, we establish a

mathematical model to simulate behaviours of other users within the information provider's net-

work. The behaviours include the information repost as well as following/unfollowing other users.

We apply the linear threshold propagation model to determine the action of repost. In addition, the

action of following or unfollowing other users is restricted by boundedly rational user equilibrium

(BRUE). The topology of the network can change depending on the information provider's plan

of posting information. The connections for the information provider, therefore, may change as

well. We establish a three-level optimization model for the information provider. The �rst level

is to maximize the information provider's connections. The second level is to simulate users' be-

haviours under BRUE. The third level is to maximize the other users' utility that need to be used

in the second level. We solve this problem by using exact algorithms for a small-scale synthetic

network. For a large-scale problem, we tackle it by using the heuristic large neighbourhood search

algorithms. In this paper, we discuss possible reasons why the BRUE model may be a more ac-

curate simulation of users' actions compared to game theory. We compare results from the BRUE

4



model to game theory, and �nd that the BRUE model performs signi�cantly better than game

theory.

The fourth project is research about blockchain technology used in energy transaction. BlockChain

technology guarantees the safety of transactions between two users who do not know each other

without any central institute. We apply this characteristic of blockchain to power system. It can

help prosumers within the power networks transact electricity and money. The users who have

redundant amount of power can sell it to other users who need power with the price lower than the

power company. It is double win for both these two users. This paper establish a mathematical

game theory model for user's decision to buy or sell power in the system. We can see what is the

in�uence to the price of the central company by introducing the blockchain to the power transaction

system. In addition, we generate the simulation with hyperledge to see its indluence to the price.

We use the KKT condition algorithm to solve the multiple level game theory model. We �nd the

price of the power can decrease dramatically by applying the transaction among prosumers unless

the amounts of generation power from prosumers are much more less than their demands.
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CHAPTER 2: ROBUST PRICING AND BOUNDEDLY RATIONAL

USEREQUILIBRIUM FOR MARKET STUDIES OF

RESIDENTIALELECTRICITY CONSUMERS IN SMART GRID

NOMENCLATURE

A. Sets, Indices, Parameters and Variables for the Equilibrium Model

A Set of appliances indexed bya

I Set of users indexed byi

i� Denote all other users inI except useri

T Set of time periods indexed byt

T0
i;a The unacceptable time periods for useri to use appliancea

T1
i;a The preferred time periods for useri to use appliancea

B. Parameters

Di;a The total daily demand of useri on appliancea

Ei;a The maximum electricity that can be consumed by useri on appliancea in one time period

pi The momentary value of the time-of-use convenience for useri

c0; c Electricity price coef�cients in the cost function

6



C. Variables

xt
i;a Electricity consumption of useri on appliancea at timet

xi The electricity usage pro�le of useri, i.e., a vector ofxt
i;a for all appliances and time periods

lt ; l ti Total electricity loads/consumptions at timet for all users and useri, respectively

pi;a Electricity consumption of useri on appliancea during preferred times

bt Surplus price for time periodt

mi Lagrangian dual multiplier for useri

pi Penalty coef�cient for useri

si Auxiliary variable for useri when using the penalty cutting plane method

D. Functions

f (�) Unit electricity cost as of a function of total load

ui(�) Utility function for useri

Introduction

With increasing world population and rapid development and use of new electrical appliances,

residential power consumption has signi�cantly increased in the past decades. According to U.S.

Energy Information Administration (EIA), the residential consumption accounts for about 37%

of the total electricity end use in the past decade (2008-2017), rising from around around 33%
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in the 1980s and 25% in the 1950s. Because the introduction of electrical vehicles (EV) [20] is

shifting from gas consumption toward electricity consumption, it is estimated that mass adoption

of EVs will double the residential electricity consumption. In the foreseeable future the percentage

of residential use in total electricity end use will continue to increase. Therefore, it is imperative

to achieve high ef�ciency in residential electricity consumption for a sustainable energy system.

Peak-to-Average (PTA) ratio of electricity demands indirectly re�ects the system redundancy and

additional cost for system stability due to the fact electrical power being a instantly perishable

commodity. Hence it is considered as an important index for power systems' ef�ciency. Demand

Side Management (DSM) by leveraging time-of-day electricity prices, has long been proposed

since 1980s to reduce PTA ratio in the commercial or industrial use. The introduction of Advanced

Metering Infrastructure (AMI) in smart grid has enable DSM in the residential sector by sending

price signals to residential consumers in real time. Various pricing schemes [59] such as time-of-

use, critical peak pricing, day ahead pricing [55, 42, 47] and real-time pricing [72, 8] have been

adopted in practice (e.g., ComEd in Chicago area) and all have achieve some level of successes in

peak load reduction.

In the literature, many have built mathematical models to study the optimal electricity consump-

tion pro�les and the optimal design of pricing schemes for DSM [17]. Since DSM is centered

around altering consumer behaviors via �nancial incentives, many have devoted to develop game

theoretical models to describe electricity consumption pro�les of residential users. For example,

[3] proposed a system optimum model and a Nash Equilibrium model considering both electricity

costs and convenience of electricity consumption pro�les. Similar works based on Nash Equilib-

rium also appeared in [71, 29]. [23] studied the use of energy management controller for electric

vehicles, and conclude that the game-theory-based controller on the New European Driving Cycle

(NEDC) works better than the existing baseline controller. Further, [100] proposed an integer lin-

ear programming models based on game theory for optimal scheduling the use of power-shiftable

8



appliances. In addition to modeling user behaviors and optimal scheduling, many have also stud-

ied the pricing problems. For example, [37] showed that a proper pricing strategy is important

to minimize the total cost and proposes optimal pricing policies under certain conditions. [72]

demonstrated that pricing strategy has big in�uence in the electricity system and proposed strate-

gies that can effectively shift users' consumption from peak to off-peak time. In addition, similar

work also appeared in [73, 18]. At the same time, many have combined the use of game theory and

pricing model to determine the optimal pricing strategies in smart grids. For example, [92] inte-

grated distributed generations to reduce the energy losses. They achieve this in two ways: making

a game theory-based loss reduction allocation and making a load feedback control with price elas-

ticity. [97], on the other hand, combined game theory and pricing strategies using virtual machines

(VMs) placement. They propose new algorithms to solve the problem of dynamic placement of

VMs for energy consumptions' optimization.

This paper considers a mathematical model framework to re�ect the reality that not every user

or even no user seeks to perfectly minimize their electricity bill (e.g., [44]) or maximize their

personal utility (including electricity cost, comfort and convenience). This is because humans

have limited cognitive ability to solve optimization problem in practice and that usage of some

home appliances can be �exible so long as certain threshold or range is maintained. In other

words, most users are satis�ed or have no incentive to change their consumption pro�les so long as

the total utility (including electricity cost, comfort and convenience) of their consumption pro�les

reaches a certain threshold. In economic literature, this phenomenon is referred to as “bounded

rationality.” In contrast to Nash equilibrium [64] where individual players optimize their own

problem until no unilateral change of strategies occurs and the system reaches an equilibrium, [78]

de�nes “boundedly rational user equilibrium” (BRUE) as the system reaches an equilibrium when

no unilateral change is needed when individual players accept the utility to be at least at a certain

percentage of the maximum value of their optimal utility. The notion of BRUE has been widely
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used in modeling users behaviors. For example, [70] use the BRUE concept in the bank system,

while [58] use the boundedly rationality in their transportation planning models. In addition, [56]

used the BRUE concept in the static traf�c assignment problem, and they solved the resulting

mathematical program with equilibrium constraints (MPEC) by using the penalty method. [36]

also use the BRUE in a dynamic traf�c assignment problem. Examples of BRUE related works in

other �elds include [44] in psychology, [26] in industrial organization, and [96] in energy systems.

To our best knowledge, this paper is the �rst to use the BRUE framework to study residential

electricity consumption and related pricing strategies in DSM in a smart grid. Under the BRUE

framework, this paper studies four core problems, extending from the system optimum model,

which aims to minimize the total generation cost while satisfying all shift-able demands. The

four core problems are actually categorized into two groups. The �rst group includes two models

built to explore the best and the worst possible performances of the BRUE conditions in terms

of total generation cost. The second group contains two models (with pessimistic v.s. optimistic

viewpoints) that aim to provide pricing strategies via bi-level optimization.

All four core problems are very dif�cult to solve due to nonlinearity and nonconvexity. Of par-

ticular, the proposed bi-level pricing models are even more challenging. However, we show that

the special structure of the lower-level electricity consumption game allows the bi-level model to

satisfy the “hidden convexity” property �rst introduced by [13] in 1996. By exploiting the hid-

den convexity of the BRUE models, it is guaranteed that the proposed Lagrangian dual cutting

plane method will produce optimal solution with zero duality gap. They especially focused on

the nonconvex, quadratically constrained problem. In a more recent study, [10] found that un-

der some conditions, the nonconvex quadratic problem is equivalent to a convex problem. Since

then, [53] and [95] analyze the conditions of hidden convex in more general cases beyond the

quadratic constrained problems. [25] uses the relaxation techniques to transform the nonconvex

to an approximately hidden convex problem. [15] discusses the hidden convex property under the

10



condition with positive eigenfunctions. [63] applied the hidden convexity to communication prob-

lems. To our best knowledge, this paper is the �rst to exploit hidden convexity to solve hard BRUE

related pricing models in a smart grid.

The contributions of this paper are summarized as follows. First, we propose mathematical models

under the principle of bounded rationality user equilibrium in residential electricity consumption

games compared to the most existing works in the literature that are under the Nash equilibrium

principle. The BRUE models are more realistic in that they adequately acknowledge that electric-

ity consumers do not necessarily optimize their energy consumption in real life. Second, we con-

sider four cases best-performance and worst-performance system optimal models with BRUE con-

straints, and pessimistic and optimistic pricing models with BRUE constraints. Furthermore, we

show that by introducing a carefully chosen time-varying surcharge, electricity users will change

their energy consumption behavior ultimately leading to higher system ef�ciency (i.e., lower peak-

to-average ratio). Third, we show that even though BRUE pricing models are non-convex, the

Lagrangian method still satis�es the property of strong duality due to its hidden convexity. Finally,

we conduct extensive sensitivity analysis to provide managerial insights for stakeholders of the

DSM program in a smart grid.

Mathematical Models

Two Energy Consumption Models

We introduce two basic energy consumption models, i.e., the system optimal and user equilibrium

models in energy consumption. The de�nition of the sets, indices, parameters and variables are

listed at the beginning of this chapter. As in [3], we considers a local residential electrical power

system withn users and a set of appliancesA for each user. In the system optimal model (SO),

11



the energy company want to minimize their total electricity cost based on the certain customer

demand. In this model,t 2 T = f 1;2; � � � ;24g has 24 time periods in a daily cycle.

(SO): min å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I ;a2A

xt
i;a (2.1a)

s.t. å
t2T

xt
i;a = Di;a; 8 i 2 I ; a 2 A; (2.1b)

xt
i;a � Ei;a; 8 i 2 I ; a 2 A; t 2 T; (2.1c)

xt
i;a = 0; 8 i 2 I ; a 2 A; t 2 T0

i;a; (2.1d)

xt
i;a � 0; 8 i 2 I ; a 2 A; t 2 T; (2.1e)

where f (lt) is the utility cost function, which is a monotone increasing function of the total elec-

tricity consumptionlt at timet. In this paper, we letf (lt) = p� lt + q. p andq are constant value

here. In the SO model, we suppose the central power company can control all users consume be-

havior to let the system work in the best way. The constraints here means the power supply meet

the customer demands.

On the other hand, unlike the central controller's system optimal model, the user equilibrium model

assumes each user optimizes her/his own objective which is a combination of electricity cost and

self convenience based on electricity consumption pro�le, i.e., when and how much the consumer

uses his/her appliances. Hence each useri maximizes the following payoff or utility:

Ui = �

"

å
t2T

f (lt) � l ti

#

+ ui (xi) (2.2)

wherel ti is the total electricity consumption by useri at timet, andxi is the electricity usage pro�le

of useri, a vector ofxt
i;a for all appliances and time periods. In this payoffUi , the �rst term is the

total power cost, which is actually the disutility for useri. The second term de�nes the convenience

utility by useri, it means when a user use the appliance within his/her desired time period, it has

12



positive convenience utility. We de�neui(xi) = å a2Aå t2T pt
i;ant

i;a(xt
i;a), wherept

i;a andnt
i;a are the

parameter of convenience. Hence, in the equilibrium model, each user needs to solve the following

UOi model:

(UOi) : max Ui = �

"

å
t2T

f

 

å
a2A

xt
i;a + å

j2 Inf ig;a2A

xt
j ;a

!

�

 

å
a2A

xt
i;a

!#

+ ui (xi) (2.3a)

s.t. å
t2T

xt
i;a = Di;a; 8 a 2 A; (2.3b)

xt
i;a � Ei;a; 8 a 2 A; t 2 T; (2.3c)

xt
i;a = 0; 8 a 2 A; t 2 T0

i;a; (2.3d)

xt
i;a � 0; 8 a 2 A; t 2 T: (2.3e)

The UOi model means each user want to maximize their unilities. Thus, the objective (2.3a)

for useri is to minimize the total disutility, but each users decision also depends on other user's

decision. It is a game theory model.

Finally, in ann-user system where each user solves their own UOi model, we de�ne the user

equilibrium for the energy consumption game as follows. In game theory model, each user does

not have the incentive to change his/her decision, it means the equilibrium will have the following

inequality.

(UE) Ui(x�
i ;x�

i� ) � Ui(xi ;x�
i� );8xi 2 Xi ; 8i = 1; � � � ;n: (2.4)

Two Boundedly Rational User Equilibrium Models

While the UE model (2.4) represents the decentralized behavior for all energy users instead of a

centralized control scheme by the utility �rm as in the (SO) model, still one drawback of the UE is

that in practice no user has either the desire or cognitive ability tooptimizea utility function. Based

13



on Simon's notion ofbounded rationality, people are assumed to be happy if they can reach some

level of utility without maximizing his/her utility. Hence, the boundedly rational user equilibrium

(BRUE) is de�ned by a set of constraints compared to simultaneous optimization problems for

equilibrium with perfect rationality. Assume useri has a satisfaction levelxi 2 [0;1], i.e., he/she is

happy if his/her utility is within the range[xiRi ;Ri ]. Here,Ri is the upper bound of useri's utility

and can be computed by assuming zero consumptions from others, i.e.,Ri = Ui(x�
i ;0). Hence, any

x 2 F satis�es the BRUE condition if the following holds:

�

"

å
t2T

f

 

å
i2 I ;a2A

xt
i;a

!

�

 

å
a2A

xt
i;a

!#

+ ui (xi) � xiRi ; 8 i 2 I : (2.5)

The BRUE constraint (2.5) enforces a lower bound on the utility of useri. Alternatively, the above

BRUE condition can be rewritten in terms of disutility as the following:

"

å
t2T

f

 

å
i2 I ;a2A

xt
i;a

!

�

 

å
a2A

xt
i;a

!#

� ui (xi) � r iWi ; 8 i 2 I : (2.6)

wherer i � 1 is a scalar andWi is the minimum disutility for useri assuming no other users exist.

Because essentially bounded rationality (BR) is represented by a lower (or upper) bound constraint

on individual's utility (or disutility), it gives rise to subsequent optimization models with such BR

constraint. Below we introduce two modeles representing the best and worst BRUE conditions,

respectively.

To formulate the best performance BRUE conditions, we aim to minimize the total system gener-

ation cost while respecting the BR constraint.

(B-BRUE): min å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I ;a2A

xt
i;a
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s.t.

"

å
t2T

f

 

å
i2 I ;a2A

xt
i;a

!

�

 

å
a2A

xt
i;a

!#

� ui (xi) � r iWi ; 8 i 2 I (2.7a)

x 2 F; (2.7b)

The above (B-BRUE) is a non-convex quadratic problem where both the objective function and the

constraints (2.7a) are quadratic.

On the other hand, the worst performance BRUE conditions are found by maximizing the total

system genration cost with the BR constraints.

(W-BRUE): max å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I ;a2A

xt
i;a

s.t. (2.7a); (2.7b)

Pricing Strategies in Boundedly Rational User Equilibrium for Electricity Consumer Market

Building on the BRUE energy consumption models the previous section, we now consider the pric-

ing strategies to be employed by the utility �rm under the two BRUE energy consumption behavior

scenarios. Because under BRUE, consumer behaviors are within a given range, the performance

of the system also falls into a range. Hence it is necessary to discuss pessimistic and optimistic

pricing strategies acknowledging varying system performances under BRUE.

The optimistic pricing model below determines an optimal pricing scheme (or surcharge on top

of the generation cost),b t , so that the resulting total system cost is minimum given any users'

behaviors under BRUE falling within their own rational bounds.

(O-P): min
b t2B;8t2T

min å
t2T

f (lt) � lt (2.9a)
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s.t.

"

å
t2T

�
b t + f

�
l ti + l ti�

��
� l ti

#

� ui (xi) � r iWi ; 8 i 2 I (2.9b)

l ti = å
a2A

xt
i;a; 8 t 2 T; i 2 I (2.9c)

x 2 F; (2.9d)

whereb t is the surcharge price at timet for all users, andb is the vector composed by allb t and

B is the set ofb t .

The (O-P) problem is a bi-level optimization problem. The upper level minimizes the total system

cost for the utility �rm to select an optima price strategyb, and the lower level minimizes the same

objective for users to select an optimal consumption pro�lexi . As will be discussed in Section 2,

the solution method for solving the (O-P) is similar to that for solving (B-BRUE) as the two levels

of minimization in (O-P) can be merged into a single level objective.

Similarly the pessimistic/robust pricing strategy determines a proper pricing strategies so that the

resulting maximum system cost due to varying consumer behaviors under BRUE can be mini-

mized. In other words, we assess the highest possible system cost given users' rational bounds of

their satisfactory utilities, and then minimize this worst case system cost. The pricing problem can

be formulated as a two-stage robust optimization problem as follows:

(PR-P): min
b t2B;8t2T

max å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

�

 

å
i2 I

å
a2A

xt
i;a

!

(2.10a)

s.t. å
t2T

 

b t + f

 

å
i2 I

å
a2A

xt
i;a

!!

�

 

å
a2A

xt
i;a

!

� ui (xi) � r iWi ;8 i 2 I

(2.10b)

x 2 F (2.10c)
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Mathematical Property and Sensitivity Analysis Based on the Models

The (PR-P) model is a non-linear and non-convex problem due to the nonlinearity of the objective

function and the BRUE constraint. This section investigates conditions under which the so-called

“hidden convexity” [13] holds for the (PR-P) problem and the next section presents its solution

algorithm by exploiting the hidden convexity property.

Hidden Convexity

“Hidden convexity” [13] refers to a non-convex optimization problem for which the Lagrangian

dual has zero duality gap. Hence, computationally it can be treated as a convex optimization

problem. Below we present three main results. First, the (W-BRUE) problem has the hidden

convexity property when there isn = 1 user in the system. Second, in general though there is

no guarantee that the hidden convexity holds for a system withn > 1. Third, whenn > 1, under

certain conditions with respect to the BRUE constraint in the (W-BRUE) problem, strong duality

can still satisfy with and without the pricing strategy.

Lemma 1. Recall the following (W-BRUE) problem.

(W-BRUE): min å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I ;a2A

xt
i;a

s.t.

"

å
t2T

f

 

å
i2 I ;a2A

xt
i;a

!

�

 

å
a2A

xt
i;a

!#

� ui (xi) � r iWi ; 8 i 2 I (2:7a)

x 2 F;

Let gi(x) =
h
å t2T f

�
å i2 I ;a2Axt

i;a

�
�
�

å a2Axt
i;a

�i
� ui (xi) � r iWi and l i be the associated La-

grangian multiplier for the ith constraint in (2.7a). Suppose x� andl � are the optimal solutions to

the primal and Langrangian dual problems, respectively, then (W-BRUE) has strong duality if the
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following holds: gi(x� ) � 0;u�
i � gi(x� ) = 0; 8i 2 I :

Proof. Let Z� and Z�
D be, respectively, the optimal objective values for the (W-BRUE) and its

Lagrangian dual after relaxing constraint 2:7a with Lagrangian multiplierl . Let

h(x) = å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I ;a2A

xt
i;a

be the objective function. From weak duality,Z�
D � Z� . Further, ifgi(x� ) � 0;8i 2 I , thenx� is a

feasible solution to (W-BRUE) and thusZ� � h(x� ). Hence,Z�
D = h(x� ) � å i2 I u�

i � gi(x� ) = h(x� ) �

Z� . Therefore,Z� = Z�
D, i.e., the Lagrangian dual method has the strong duality.

Lemma 2. [39]

Let A and B be two real symmetric matrices. If there exista , b 2 R such thata A+ bB > 0, then

there exists a nonsingular matrix C2 Rn� n such that both CTAC and CTBC are diagonal.

Lemma 3. [13]

Consider the following nonlinear program:

(BT): min 1=2xTAx+ cTx

s.t. 1=2xTBx� d;

1=2xTGx+ hTx+ k � 0;

where A;B;G 2 Rn� n are symmetric, and c;d;k;h 2 Rn. The following holds:

(1) If one of the matrices A;B;G is a zero matrix and the other two are simultaneous diagonalizable,

then separability is obtained.

(2) Let n�
1 � 0 and n�

2 � 0 be the KKT multipliers of the two constraints of (BT), respectively,

corresponding to an optimal solution x� . Then, eithern�
1 = 0 or n�

2 = 0 holds.
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We rewrite the W-BRUE model as follows:

(W-BRUE-Q): min p� xTAx+ qT
1 x;

s.t. xTBkx+ dT
1 x� dk � 0; k = 1;2; � � � ;n

HTx+ m� 0;

x 2 RnT;q1 = [ q;q; � � � ;q]

A; Bk 2 RnT� nT;dk 2 R;m2 R

Where p and q are relative value in functionf (lt) = p� lt + q. dT
1 x = q

h
å t2T

�
å a2Axt

i;a

�i
� ui (xi),

it has a linear relation withx. dk = r kWk. We can have linear transformation for the variable x to

let d1=0. n is the number of users,T is the number of time periods andA andBk are symmetric

whose(i; j)th elements are de�ned below.

ai j =

8
><

>:

1; 8(i; j) 2 A1

0; else
; bl

i j =

8
>>>><

>>>>:

1; 8(i; j) 2 Bl
1

1=2; 8(i; j) 2 Bl
2 [ Bl

3

0; else

A1 =
n

(i; j) : n(t � 1)+ 1 � i � nt;n(t � 1)+ 1 � j � nt; 8t = f 1;2; � � � ;Tg
o

.

Bl
1 =

n
(i; j) : i = j = n(t � 1)+ l ; 8t = f 1;2; � � � ;Tg

o
.

Bl
2 =

n
(i; j) : i 6= j; i = n(t � 1)+ l ;n(t � 1)+ 1 � j � n(t � 1)+ T; 8t = f 1;2; � � � ;Tg

o
.

Bl
3 =

n
(i; j) : i 6= j; j = n(t � 1)+ l ;n(t � 1)+ 1 � i � n(t � 1)+ T; 8t = f 1;2; � � � ;Tg

o
.
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To illustrate, whenn = 2 the matricesA andB1 are as follows.

A =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 0 0 : : : 0 0

1 1 0 0 : : : 0 0

0 0 1 1 : : : 0 0

0 0 1 1 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 : : : 1 1

0 0 0 0 : : : 1 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; B1 =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1=2 0 0 : : : 0 0

1=2 0 0 0 : : : 0 0

0 0 1 1=2 : : : 0 0

0 0 1=2 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 : : : 1 1=2

0 0 0 0 : : : 1=2 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

If there is more than one person in the system, the BRUE constraints for the model (W-BRUE) are

nonconvex constraint. Because with the de�nition of convex feasible region in such form, we need

the matrixBk to be an positive semi de�nite (PSD) matrix. But actually in our case if we choose

x = [ 1; � 2;0;0; � � � ;0], then nowxTB1x = � 1 < 0, and nowx 6= 0, soB1 is not a PSD matrix, then

the feasible region for such constraint is not a convex set.

Theorem 1. Consider the (W-BRUE) problem and its Lagrangian dual after relaxing constraint

(2.7a).

(1) If n = 1, then strong duality holds for the (W-BRUE) and the Lagrangian dual.

(2) If n > 1 and at least n� 1 constraints in (2.7a) are non-binding at the optimal solution, then

strong duality holds for the (W-BRUE) and the Lagrangian dual.

Proof. First consider the special case wheren = 1. In this case,A and B are both an identity

matrix. According to Lemma 2, there exists a nonsingular matrixC such that bothCTACandCTBC

are diagonal. We callC as the simultaneous diagonalization matric forA andB. Subsequently,

applying Lemma 3's result (1), one concludes that the W-BRUE problem withn = 1 is convex.
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On the other hand, ifn > 1 and at leastn � 1 (2.7a) constraints are non-binding at the optimal

solution, then there is only one constraint that is active in the system. Hence, the problem also

reduces to a convex problem.

Note that Theorem 1 suggests that when the value ofrho in constraint (2.7a) is chosen such that

conditions (1) or (2) in the theorem holds, then strong duality holds between W-BRUE and its

Lagrangian dual. Below is a counterexample when neither (1) nor (2) is satis�ed, then there may

be duality gap between W-BRUE and its dual.

Finally we present some strong duality results for the pessimistic pricing problem (PR-P) in

(2.10a)-(2.10c). LetZ� andb � be the optimal objective value and the associated optimal pricing,

respectively. Further, letZ�
b0 denote the optimal objective value for the inner maximum problem

whenb is �xed at b
0
. When relaxing constraint (2.10b) for the Lagrangian dual problem (PR-PD)

(see details in section 2), we useZ�
D to denote the optimal objective value for the dual problem

(PR-PD), andb �
D to denote the corresponding optimal value forb for (PR-PD). Finally, letZ�

D; b0

be the optimal objective value for problem (PR-PD) whenb is �xed at b
0
.

Theorem 2. The following holds for the pessimistic/robust pricing model (PR-P).

(1): Z� = Z �
D if and only if Z�

b � = Z �
D; b � , when it has the unique solution.

(2): Strong duality holds for (PR-P) and its Lagrangian dual when relaxing constraint (2.10b) if

and only if it has the strong duality to �xb = b � .

Proof. For part (1), �rstly, if Z� = Z�
D is satis�ed, then we show thatZ�

b � = Z�
D; b � . This is because

Z� = Z�
b � ;Z�

D = Z�
D;b �

D
From the de�nition ofb � , one hasZ�

b � � Z�
b �

D
Further, by weak duality,Z�

b �
D

�

Z�
D;b �

D
. HenceZ� = Z�

b � � Z�
b �

D
� Z�

D;b �
D

= Z�
D = Z� . Therefore, all inequalities hold as equality, i.e.,

Z�
b �

D
= Z�

b � = Z�
D; b �

D
. Because it has the solution, one obtainsb �

D = b � , thusZ�
b � = Z�

D; b � .

Secondly, we show that ifZ�
b � = Z�

D; b � thenZ� = Z�
D. This is becauseZ� = Z�

b � � Z�
b �

D
� Z�

D; b �
D

=
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Z�
D � Z�

D; b � = Z�
b � . Similar to the above, all inequalities must hold as equalities, thereforeZ� = Z�

D.

For part (2), this is a direct result of part (1).

Algorithms for BRUE and Pricing Models

We have four BRUE related models. (B-BRUE) is the Best Performance of the BRUE Condi-

tions, whereas (W-BRUE) is the Worst Performance of the BRUE Conditions. When pricing is

considered, (O-P) solves for the optimistic Pricing Strategies whereas (PR-P) determins the pes-

simistic/Robust Pricing Strategies. For these four models, we apply three calculation methods for

different models. First method is using solver BARON [87] directly. BARON can be used tor

solve (B-BRUE), (W-BRUE) and (O-P). Second method is that we develop a penalty cutting plane

method for each model and then apply BARON to solve the sub-problems. Third method is ap-

plying the lagrangian dual cutting plane method for each model and then solve sub-problems with

BARON.

Cutting Plane with Penalty Method

In model (B-BRUE), (W-BRUE) and (O-P), we can use BARON to solve the problem directly.

However, since (PR-P) is a robust optimization, BARON cannot be used directly to solve it. In this

section, we �rst propose a penalty cutting plan method for solving the (RP-P) and then propose a

Lagrangian dual cutting plane method, and �nally compare the ef�ciency of the two methods.

In devising the penalty cutting plane, we penalize all BRUE constraints in (PR-P) into the objective
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function, and therefore obtain the following problem (PR-PP).

PR-PP: min
b t2B;8t2T

max
x2F

P(x;b); (2.12a)

whereP(x;b) is new penalty objective function. More speci�cally,

P(x;b) = å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

�

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I

pi

"

r iWi + å
t2T

 

bt + f

 

å
i2 I

å
a2A

xt
i;a

!!

�

 

å
a2A

xt
i;a

!

� ui (xi) + si

#2

;

wherepi is the penalty value for the corresponding constraint (2.10b),u = [ ui ; 8i 2 I ]T is as before

the utility coef�cient, andsi � 0 is the slack variable for the constraint (2.10b).

Hence the model of the cutting plane method can be formulated as follows.

(PR-MPP): min
b2B; p

p (2.13a)

s.t. p � akb + bkb
2 + ck; 8k = 0;1;2; � � � ; l (2.13b)

ak, bk, ck are the corresponding coef�cient forb , b2 and constant value inP(x;b) whenx = xk,

andp is the cutting plane value. Below is the outline for the resulting penalty cutting plane method.

Remark.Under optimal pricing strategies, the optimal system cost falls into the range of[ZO-P;ZPR-P]

due to user's behavior under BRUE.
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Algorithm 1 ALG� PR� PP

1: Set k=0,b0 = 0, UB = M, LB = -M.
2: Solve maxf P(x;bk)jxi 2 Xi ;8ig by BARON. We can getxk and the upper bound of PR-PP,

denote asUBk.
3: If UBk < UB, UB = UBk.
4: Getak, bk, ck by usingxk.
5: Add the cutting plane (2.13b) by using the relativeak,bk,ck.
6: Solve PR-MPP by BARON and getbk+ 1 . And pk+ 1 is the lower bound of PR-PP, denote as

LB.
7: If UB > LB, k = k+ 1, go to Step 2. Otherwise, stop.

Lagrangian Dual Cutting Plane Method

We recognize that the second stage in (PR-P) is a maximization problem for a givenb. This is

indeed the same problem as (W-BRUE). Therefore, hidden convexity holds if we relax constraint

(2.10b), and this has motivated us to study the Lagrangian dual cutting plan method as an alterna-

tive to the penalty cutting plan method.

After obtaining the Lagrangian dual for the inner maximization problem of the (PR-P) by relaxing

constraint (2.10b), the new equivalent problem (PR-PD) is as follows.

(PR-PD): min
b t2B; m� 0

max
x2F

L(x;b ;m);

whereL(x;b ;m) is the new objective function. More speci�cally,

L(x;b ;m) = å
t2T

f

 

å
i2 I

å
a2A

xt
i;a

!

�

 

å
i2 I

å
a2A

xt
i;a

!

� å
i2 I

mi

"

r iWi + å
t2T

 

b t + f

 

å
i2 I

å
a2A

xt
i;a

!!

�

 

å
a2A

xt
i;a

!

� ui (xi)

#

;

wheremi is the lagrange dual variable corresponding to constraint (2.10b) andm= [ mi ; 8i]T .
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Hence the Lagrangian dual cutting plane model can be formulated as follows.

(PR-MP): min
b2B; m� 0; p

p

p � ak � m+ bk � b + ck � m� b + dk; 8k = 0;1;2; � � � ; l ;

where as previously,ak, bk, ck anddk are corresponding coef�cient form,b, m� b and the constant

in L(x;b ;m) whenx = xk. Also similar to previously,p is the cutting plane value. Below is the

outline of the Lagrangian dual cutting plane method.

Algorithm 2 ALG� PR� PD

1: Set k=0,b0 = 0, m0 = 0, UB = M, LB = -M.
2: Solve maxf L(x;bk;mk)jxi 2 Xi ;8ig by BARON. We can getxk and the upper bound of PR-PD,

denote asUBk.
3: If UBk < UB, UB = UBk.
4: Getak, bk, ck anddk by usingxk.
5: Add the cutting plane (2.14) by using the relativeak, bk, ck anddk.
6: Solve PR-MP by BARON and getbk+ 1, mk+ 1. And pk+ 1 is the lower bound of PR-PD, denote

as LB.
7: If UB > LB, k = k+ 1, go to Step 2. Otherwise, stop.

Computational Experiments and Results

In this section, we compute the result for all of the four former cases. We solved it in Matlab using

the solver BARON. All of the calculations were run on a Intel(R) Core(TM)2 Duo CPU serve with

4GB of memory in 64-bit Operating System.

We de�ne the preferred usage utility function as below,

ui(xi) = pi å
a2A

�
pi;a

Di;a

�
(2.14)
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wherepi is the corresponding utility coef�cient for useri andpi;a = å t2T1
i;a

xt
i;a is the total amount

for the useri to use appliancea in the preferred time period. We de�ne the unit cost function as

ft(lt) = c0 + c1lt , hereft means the total load at the time periodt.

Results under Different Data Sets

We will use differ data set to calculate for our four different models, and will analysis the calcula-

tion time and accuracy by using three algorithms mentions before.

A Simple Example With Four Time Period

We consider a quick example with two users, two appliances and four time periods. We use[a ;b ]

to demonstrateT � T0
i;a, which means the time period that available for the useri with appliance

a. Use[a p;bp] to demonstrateT1
i;a, which means the preferred time periods for the useri with

appliancea. In this case, we have 1� a � a p � bp � b � 4. The relative parameters are shown

in Table 2.1. And we setc0 = 10,c1 = 3, which is used in the unit price functionft(lt) = c0 + c1lt

in example 1. Setr 1 = 1:214,r 2 = 1:054,p1 = p2 = 100, penalty valuep1 = p2 = 100, setB is

� 1 � å t b t � 1, � 0:5 � b t � 0:5.
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Table 2.1: Parameters of Simple Example

User Appliance Di;a Ei;a a b a p bp

1 1 7 3 1 3 1 1

1 2 3 1 2 4 4 4

2 1 6 4 2 4 3 3

2 2 4 3 1 3 2 2

We solve this problem with solver BARON directly and penalty method, the results are shown in

Table 2.2 and Figure 2.1(a), 2.1(b), 2.1(c).w1 is the minimum optimal cost for the user 1, if we

suppose user 2 do not need to obey the BRUE. It has the similar de�nition forw2.

Table 2.2: Results of Simple Example

w1 = 164:81

w2 = 123:30
(B-BRUE) (W-BRUE) (O-P) (PR-P)

Cost 513.2 542.9 510.2
LB: 533.5

UB: 536.3

Solve Method BARON BARON BARON Penalty

Iterations N/A N/A N/A 1000

Time Cost 0.79s 0.7s 1.12s 8 days
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(a) Upper Bound (b) Lower Bound (c) Upper Bound and Lower Bound

Figure 2.1: Upper Bound and Lower Bound of Model (PR-P) by k Increasing

Table 2.2 shows that the result for four cases is different and the cost of (B-BRUE) = 513.2 is

greater than the cost of (O-P) = 510.2, the cost of (W-BRUE) = 542.9 is greater than the cost of

(PR-P) =[533:5;536:3]. The values within the brackets are relatively the lower bound and upper

bound of model (PR-P). This is reasonable because the optimal solution of (B-BRUE) must be

a solution of (O-P) = 510.2, it just meansb t = 0;8t 2 T in (O-P). And the same reason with

(W-BRUE) and (PR-P).

The calculation time cost for the �rst three cases are just seconds, but the calculation time for

the (PR-P) is about 8 days, and it also has the gap of 2.8. This is slow �rst because we use the

cutting plane method and the iterations are 1000. Second reason is that we also use the penalty

method, then in this case we introduce new slack variablessi ;8i 2 I and make a square for the

BRUE constraints, now the objective function become more complex.

Figure 2.1(a) shows that upper bound is decreasing whenk increasing, it is because we use the

judgement (ifUB(k) < UB;UB(k) = UB). Figure 2.1(b) shows that lower bound is increasing

whenk increasing, it is because for a new iteration, we add a new constraint to the former iteration,

and it is a minimum problem, so the result for the Lower Bound is increasing. Figure 2.1(c) shows

that when k increasing, the upper bound and Lower Bound go to a convergency value.
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Results for Instances with 24 Time Periods

From the result of four time periods case study. We know that the calculation time for the model

(PR-P) which is a max-min problem with the penalty and cutting plane method is 8 days. And

the gap is still 2.8 between the upper bound and lower bound from the cutting plane method.

Then we use the lagrangian cutting plane method to solve our problem. In this example, the

data are based on daily energy consumptions of three appliances: dishwasher, vehicle and air

conditioner [1]. The unit cost hereft(lt) = c0 + c1lt ;c0 = 7:43 cents,c1 = 1:55 cents per KWh.

p1 = p2 = 100,r 1 = r 2 = 1:7. The upper bound of the lagrangian dual isu0 = 100. setB is

� 1 � å t b t � 1, � 0:1 � b t � 0:1. The other parameters are based on the Table 2.3.

Table 2.3: Parameters of 24 Hours Example

User Appliance Di;a Ei;a a b a p bp

1 1 6.0753 1.1703 1 24 3 10

1 2 13.0305 3.2684 1 24 4 9

1 3 18.5805 2.3439 1 24 5 15

2 1 6.0753 1.1703 1 24 3 13

2 2 13.0305 3.2684 1 24 4 12

2 3 18.5805 2.3439 1 24 5 18

First under the current parameters, we can calculatew1,w2. Then we calculate the four cases by

different methods. The results are shown in Table 2.4.
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Table 2.4: The Results of 24 Hours Example

w1 = 150:2

w2 = 120:0

Solve Method

Baron Penalty Lagrange Dual

(B-BRUE)

Lower Bound N/A - 936.677

Upper Bound 936.675 - 936.704

Time Spend 1 day - 2.5 hours

Iteration N/A - 11

(W-BRUE)

Lower Bound N/A - 987.678

Upper Bound 987.696 - 987.697

Time Spend 1 day - 2.5 hours

Iteration N/A - 10

(O-P)

Lower Bound N/A - 933.985

Upper Bound 933.991 - 934.047

Time Spend 1 day - 2.5 hours

Iteration N/A - 11

(PR-P)

Lower Bound N/A 853.471 972.371

Upper Bound N/A 978.151 973.030

Time Spend N/A 7 days 3 hours

Iteration N/A 100 12
`N/A': There has no meaning for such condition.

`-': Not calculate the result under that case.
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Figure 2.2: Upper Bound and Lower Bound by Iterationk in 24 Hours Model

From the Table 2.4, we can know that the calculation speed of penalty method is much slower

than the lagrangian method, using the penalty method, we get the result with a gap of 978:151�

853:471= 124:68 after 100 iterations and the time cost is about 7 days for model (PR-P). But

using the lagrangian method, we get the result with a gap of 973:030� 972:371= 0:659 only in

12 iterations and the time cost is about 3 hours for model (PR-P). We found that the lagrangian

method can get more accuracy result compare to the penalty method and also spend less time to

calculate. Figure 2.2 gives out the upper bound and lower bound by increasing the iterationk using

algorithm 2ALG� PR� PD.

We also found that the time to solve model (PR-P) and model (W-BRUE) is almost the same with

lagrangian method, and the numbers of iterations to be converged is also the same(for (W-BRUE)

is 10, for model (PR-P) is 12). Without using the lagrangian method, the model (PR-P) is a min-

max problem and (W-BRUE) is just a max problem. But using the lagrangian method, calculation

speed of them become similar. It is because we introduce a lagrangian dualmto the system, and

in model (PR-P), we can mix the master problem variable unit priceb andmtogether, so we can
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solve the master problem just like the (W-BRUE). Then we can know that the lagrangian method

is an ef�cient method for the min-max or max-min problem if there is no lagrangian gap exists.

Figure 2.3 give us the result for the residual values for each BRUE constraint for different iteration

k. From the results we can know that the tendency of the residual is becoming 0 when the iteration

is increasing. And from the theorem 1 and 2 we can know that now our lagrangian dual method

has the strong duality.

Figure 2.3: Residual For BRUE Constraints with Tow Users

The Results in24Hours for Multiple Users

In the real world, we can divided the people in different group of people with different rationality

coef�cient r . In table 2.5, we give the results for 4 users and 10 users system with the lagrange

dual method. For the 4 users system, we set two users withr = 1:7 and other two users with

r = 1:8. For the 10 users system. we set the ten users in �ve groups with the differentr , and

relativelyr = 1:7, 1:8, 1:9, 2:0, 2:1.
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Table 2.5: The Results of 24 Hours for Multiple Users Example

(B-BRUE) (W-BRUE) (O-P) (PR-P)

4 users

Lower Bound 2613.7 2756.6 2604.6 2714.5

Upper Bound 2623.4 2766.2 2614.4 2724.2

Error(%) 0.37 0.35 0.38 0.36

Time Spend 8 hours 8 hours 8 hours 9 hours

Iteration 23 23 24 29

10 users

Lower Bound 12099 12618 12053 12428

Upper Bound 12297 12812 12248 12626

Error(%) 1.6 1.5 1.6 1.6

Time Spend 1 day 1 day 1 day 30 hours

Iteration 73 76 74 94

We also calculation for the residual value for each BRUE constraints when the iteration k increasing

in 10 users system. If we set

Violationk = maxf (gi(x�
k);0)ji = 1;2; � � � ;10g; 8k

Then we have the �gure 2.4, Which shows that the convergency solution almost to be zero, that

means now it has the strong duality.

33



Figure 2.4: Residual For BRUE Constraints with 10 Users

Sensitivity Analysis

As we know, if the coef�cient parameter's of human beings was changed, the �nal result will also

change. We want to know the relations for the in�uence by changing the coef�cient parameter's of

human such as the boundedly rationality coef�cientr , preference coef�cientp and the customer's

demandD. Here we give some theorems about the sensitivity analysis. And we will test them in

the computer results part.

Impacts ofp andr to the System

As we know,p is the utility coef�cient for the user andr is the Boundedly Rational coef�cient

for the user. These two parameters are determined by the user, it changes with different groups of

users. So we want to discuss how the different values ofp andr in�uence the system and total

cost. The results for the in�uence ofp are shown in Figure 2.5(a). The results for the in�uence of

r are shown in Figure 2.5(b). The followings are some remarks for the in�uence ofp andr to the
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energy system.

Remark.When the utility coef�cientp is increasing, the minimum optimal objective value is also

increasing.

This is because whenp is increasing, actually it means the users have more incentive to use the

energy in their prefer using time period because the utilities for them to use the energy in such

time period are higher. Then this will lead to the peak of the energy consumption is higher, so the

minimum optimal objective value is also higher.

Remark.The in�uence by introducing the pricing strategy is better when the utility coef�cientp

is greater in the minimization problem of BRUE model.

As we discussed before, whenp is smaller, the users prefer to use the energy in average for each

time period. So the pricing strategy does not give much in�uence to the user's behaviour. But

whenp is larger, the user prefer to use the energy in their prefer time period, at this time, we can

using pricing strategy to encourage some users to move their time to use the energy to their unlike

time period. So the effect for the pricing strategy is better whenp is larger.

Remark.When the BRUE coef�cientr is increasing, the minimum optimal objective value is

decreasing together with the maximum optimal objective value is increasing.

Whenr is increasing, it will lead that the feasible region for the BRUE constraint is increasing.

And the objective function and other constraints are keep the same. So for minimization problem,

the optimal value become smaller. And for maximization problem, the optimal value become

greater.

Remark.The in�uence by introducing the pricing strategy is better when the BRUE coef�cientr

is smaller in the minimization problem of BRUE model.

Whenr is greater enough, it means actually we do not have the BRUE constraint, now we will
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have no in�uence by using the pricing strategy. But whenr become smaller, the uncertainty set

for the users behaviour that restricted by the BRUE constraint also becomes smaller. This will lead

to the peak hours energy consumption become higher. Now the pricing strategy can make �atten

for the energy consumption curve.

(a) In�uence byp (b) In�uence byr

Figure 2.5: Sensitivity Analysis

Figure 2.5(a) shows Remark 2 and Remark 2, whenp is increasing, the cost is also increasing.

And it also shows that for the maximization problem, it does not have this property. And the gap

of use or not use the pricing strategy is increasing whenp is increasing.

Figure 2.5(b) shows Remark 2 and Remark 2. Whenr is increasing the optimal cost of the min-

imum problem is decreasing, and for the maximum problem the optimal cost is increasing. And

the gap of use or not use the pricing strategy is decreasing whenr is increasing.

The relative Difference of the Total Cost With or Withoutb

From the above we know that, if we use theb to the unit price, the total cost can decrease no

matter in the best condition or the worst condition. And we also want to know that how much
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improvement by introducingb, we want to calculate the relative improvement in both the best

and worst condition. We use the formulation that. The relative improvement of best condition

improvement

IB =
(Total cost of best withoutb- Total cost of best withb)

Total cost of best withoutb
� 100%

The relative improvement of best condition improvement

IW =
(Total cost of worst without b- Total cost of worst with b)

Total cost of worst without b
� 100%

Figure 2.6(a), 2.6(b) shows the relative improvements. We can know from the result that when

p increasing, the relative improvement to introduceb is also increasing. This is because whenp

increasing, thew is decreasing, then(r � 1)w is decreasing, it lead to the impact ofb is increasing.

Whenp = 100, the we can improve the system in about 0.6% at best condition and about 5.7% at

the worst condition.

(a) The Relative Improvement of the Best Condition(b) The Relative Improvement of the Worst Condition

Figure 2.6: The Relative Improvement of the Best and Worst Condition by Using Pricing Strategy
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The In�uence of the Change for the Customer Demand

In this section, we make changes to the customer demand for different users. For some theoretical

analysis, we list them in following. It is the theory for the special case with two users and two

appliances. We compare their in�uence to the total cost in minimization case and maximization

case under different customer demand. In numerical result, we make changes to the demand by

the following rules,D
0

2 = D2 � s or D
0

4 = D4 � s , hereD2 is D1;2 andD4 is D2;2 in table 2.1. The

results are shown in the following �gures. Figure 2.7 and 2.8 shows the results for the neww1/w2

and the relative minimization/maximization cost when we change the customer demand. We can

know that in our example, the change ofD2 has more in�uence to the system compare than the

change ofD4 no matter in the minimum or the maximum cases. And the relation ofw1/w2 and the

relative minimization/maximization cost have linear relation respect to the change of demand with

sensitivity analysis.

In the case with two users and two appliances model, the de�nition of the variables and the prefer-

ence time period are shown in Table 2.6. We will name this model as (Sim) and we have our model

as

Table 2.6: The De�nition of Variables for the Simple Example Used for Sensitivity Analysis

Variables T1 T2 Preference

Person 1 x11 x12 T1

Person 2 x21 x22 T2
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(SW1): w1 = min [c1 � (x11+ x21) + c0] � x11+ [ c1 � (x12+ x22) + c0] � x12 � p1 � x11

s.t. x11+ x12 = D1;

x21+ x22 = D2;

x11;x12;x21;x22 � 0;

(SW2): w2 = min [c1 � (x11+ x21) + c0] � x21+ [ c1 � (x12+ x22) + c0] � x22 � p1 � x22

s.t. x11+ x12 = D1;

x21+ x22 = D2;

x11;x12;x21;x22 � 0;

(Sim): min=max (c1 � (x11+ x21) + c0) � (x11+ x21) + ( c1 � (x12+ x22) + c0) � (x12+ x22)

s.t. x11+ x12 = D1;

x21+ x22 = D2;

(c1 � (x11+ x21) + c0) � x11+ ( c1 � (x12+ x22) + c0) � x12 � p1x11 � r w1;

(c1 � (x11+ x21) + c0) � x21+ ( c1 � (x12+ x22) + c0) � x22 � p2x22 � r w2;

x11;x12;x21;x22 � 0;

Wherec1, c0 is the coef�cient for the unit energy price, andp1, p2 is the relative preference

coef�cient for the users,D1, D2 is the relative customer demand.

Theorem 3. It has more in�uence to the optimal value of the problem (Sim) when we change D1

compare to we change D2, when any one of the following two conditions is achieved.
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Condition1, 2D1 � D2 + p1=c1, 2D2 � D1 + p2=c1, 2D2 � (p2 � c0)=c1.

Condition2, 2D1 � D2 + p1=c1, 2D1 � (p1 � c0)=c1, 2D2 � D1 + p2=c1, 2D2 � (p2 � c0)=c1.

Proof. First we make the de�nition that(x1
11;x

1
12;x

1
21;x

1
22) is the optimal solution to calculatew1,

and(x2
11;x

2
12;x

2
21;x

2
22) is the optimal solution to calculatew2, and

f1 = ( c1 � (x11+ x21) + c0) � x11+ ( c1 � (x12+ x22) + c0) � x12 � p1 � x11;

f2 = ( c1 � (x11+ x21) + c0) � x21+ ( c1 � (x12+ x22) + c0) � x22 � p2 � x22;

We have thatx1
11 � x1

12, because if not we can choose( fx1
11;

fx1
12;

fx1
21;

fx1
22) = ( x1

12;x
1
11;x

1
22;x

1
21) which

is also feasible to the problemSW1, but the value of the objective function is obviously less than

the optimal value with(x1
11;x

1
12;x

1
21;x

1
22), that is contradict to it is the optimal solution to problem

SW1. Now obviously we have(x1
12;x

1
22)=(0;D2), this is because �rst the feasible set for the person

1 and person 2 is separated. Second, the coef�cient forx12 is greater or equal to the coef�cient for

x22. Now if we letx12 = D1 � x11, then

f1(x11) = c1 � (x11 � x11+ ( D1 � x11+ D2) � (D1 � x11)) + c0 � D1 � p1 � x11

Then

d( f1(x11))=d(x11) = 4c1x11 � (2c1D1 + c1D2 + p1)

d2( f1(x11))=d(x11)2 = 4c1 > 0:

So if we letd( f1(x11))=d(x11) = 0 and the solution(x1
11;x

1
12)=(D1=2+ ( D2 + p1=c1)=4;D1=2�

(D2 + p1=c1)=4)for this is also feasible for the problemSW1, then this solution must be the opti-

mal solution forSW1, if the solution not optimal for problemSW1, then(x1
11;x

1
12)=(D1;0). The
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feasibility need that 2D1 � D2 + p1=c1, so we can get the result that

w1 =

8
>>>>>>><

>>>>>>>:

c1D2
1 + c0D1 � p1D1; 2D1 � D2 + p1=c1

c1 � ((D1=2+ ( D2 + p1=c1)=4)2+

(D1=2+ ( D2 + p1=c1)=4+ D2) � (D1=2+ ( D2 + p1=c1)=4))

+ c0D1 � p1(D1=2+ ( D2 + p1=c1)=4); 2D1 � D2 + p1=c1

And similarly for the problemSW2, we can get the result

w2 =

8
>>>>>>><

>>>>>>>:

c1D2
2 + c0D2 � p2D2; 2D2 � D1 + p2=c1

c1 � ((D2=2+ ( D1 + p2=c1)=4)2+

(D2=2+ ( D1 + p2=c1)=4+ D1) � (D2=2+ ( D1 + p2=c1)=4))

+ c0D2 � p2(D2=2+ ( D1 + p2=c1)=4); 2D2 � D1 + p2=c1

For condition 1,

d(w1)=d(D1) = c1(4D1 + 2D2 � 2p1=c1)=4+ c0;

d(w1)=d(D2) = c1(2D1 � D2 � p1=c1)=4;

d(w2)=d(D1) = 0;

d(w2)=d(D2) = 2c1D2 + c0 � p2;

And

d(w1)=d(D1) � d(w1)=d(D2) = c1(2D1 + 3D2 � p1=c1)=4+ c0 � 0;

d(w2)=d(D1) � d(w2)=d(D2) = � (2c1D2 + c0 � p2) � 0;
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For condition 2,

d(w1)=d(D1) = 2c1D1 + c0 � p1;

d(w1)=d(D2) = 0;

d(w2)=d(D1) = 0;

d(w2)=d(D2) = 2c1D2 + c0 � p2;

And

d(w1)=d(D1) � d(w1)=d(D2) = 2c1D1 + c0 � p1 � 0;

d(w2)=d(D1) � d(w2)=d(D2) = � (2c1D2 + c0 � p2) � 0;

So either the condition 1 or condition 2 happens, we will have that the change forw1;w2 by

changingD1 is larger than by changingD2. So the in�uence is greater to the optimal value of the

problem (Sim) when we changeD1 compare to we changeD2.
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Figure 2.7: The In�uence of Optimal UtilityW by Change of Demand

Figure 2.8: The In�uence of Total Cost by Change of Demand

Compare of the Game Theory Model and BRUE with Pricing Strategy

In this section, we will compare the result of different pricing strategy that relatively determined

by the game theory model and the BRUE model. We will �rst calculate the optimal price under
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the game theory model. Then we use this price to our BRUE model and get the result under such

pricing strategy. And we can get what is the error that we will get if we use the game theory model

to determine the pricing strategy.

(a) Compare of Game Theory (GT) and BRUE with

Different r andp

(b) Difference(%) of Game Theory and BRUE with

Different r andp

Figure 2.9: The Difference of BRUE and Game Theory Model

Figure 2.9(a) gives the difference of the cost when we use the price that get from the game theory

model to our BRUE model for differentr and differentp. We can know that all of the difference

is positive.
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CHAPTER 3: ROBUST OPTIMIZATION WITH SURPLUS PRICE

TRANSPORTATION UNDER BOUNDEDLY RATIONALITY USER

EQUILIBRIUM

NOMENCLATURE

A. Sets, Indices, Parameters and Variables for the Static Model

I ;J Set of the node in the network, indexed byi; j

(I ;J) Set of arcs, indexed by(i; j)

O;D Set of original and destination, indexed byo;d

(O;D) Set of arcs, indexed by(od)

WOD Possible pairs of routes for(od), indexed bywod

B. Parameters

Dod Demand for(od)

a i j ;wod Binary value equals to 1 when the pathwod go through arc(i; j). Else equals to 0.

bi; j , ki; j Relative coef�cient of arc(i; j) for the Time function.

C. Variables

xr ;(od);wod
Flows go into the system with rationalityr on (od) on the pathwod
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fi j Flows on arc(i; j)

Binary bi j Whether or not to change the direction of the road of (i,j)

Uod Minimum utility for (od)

D. Functions

T(�) Time cost function

Introduction

In recent world, the transportation methods are very important to our lives. We need transport the

food, clothes, daily necessities and so on everyday all over the world. Also we have a lot of dif-

ferent kinds of methods to transport them, such as through the air, rail, road, water or tube. In this

paper, we will emphasis on the road transportation. In 2010, there were over 1 billion automobiles

in the world [93]. Road transport undertakes the most part of the transportation. We know that

under some conditions, the road will become crowed and the travelling speed will reduce. Such

as when the evacuation happens, the �ows on the road will in�uence the evacuation speed dramat-

ically. There were some research in this �eld before [76, 75, 94, 84]. But only few researchers

[56] consider the boundedly rational to the problem and models. We will solve our problem under

the boundedly rational user equilibrium (BRUE) by introducing the pricing strategy to our models.

Different with Lou's work [56] with arc based �ows, our model is path based �ows, which is the

actually conditions for the BRUE model.

BRUE model is proposed by Simon in year 1957 [77, 80, 81, 79], which means for one individual,

when the difference of the utilities of different options that the individual can choose are below
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a level, this individual will regard the utilities of such different options as the same. He or she

may choose any options within that level as his or her �nal decisions. Here in our model of the

transportation system, the utility includes the travel time and the surplus price. The concept of

boundedly rational can be used in many �elds, such as the energy system [96], psychology [44],

military [69], transportation [58, 24, 56]and so on [70, 58, 36, 27]. When a individual in the

transportation system, the individual will have a bunch of choices for the path go from the origi-

nal place to the destination. Different pathes will have different utilities. And the individual may

choose any path that ful�ll the BRUE constraints. It means that for the pathes that do not ful�ll

the BRUE constraints, the �ows will be zero. Actually the difference between BRUE and game

theory is just the tolerance level. In the well known game theory model, the tolerance level can

only be zero. But in the BRUE model, the tolerance can be greater or equal to zero. So game

theory is just a special case of BRUE. Some former research was also done under the game theory

[3] to the energy system. And also some work was done under game theory to the transportation

system [32, 9, 61]. The transportation problem is a classical illustration for the game theory model.

As discussed above, the �ows maybe only aggregate in some pathes. This will lead the time cost

for the total system large. We introduced the pricing strategy to disperse the �ows. The pricing

strategy is a well known method [49, 51] to make the system work better. Especially in the trans-

portation system [54, 60], by introducing the price to the arcs in the network, we can control the

behaviour of the individuals under the BRUE conditions by controlling the price that we can de-

termine for each arc. But after introducing the price to the system, our model will be a two level

optimization model. The outer is to make minimization for the price. And the inner level is to

make maximization under the worst case and minimization under the best case for the individual

behaviour. When we want to consider the worst case, actually our model become a robust opti-

mization model, the price become the robust price. We gave the algorithms [99] how to solve the
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robust problem.

In our models, we proposed a path �ow based system. It means that our main decision variables

are the �ows for each path. As we know, the number of pathes have the exponential relations with

the number of arcs in the system. So the number of pathes are actually a large value even if the

network itself is not so large. It will be hard for us to solve the problem directly, then we use the

column generation and branch and price method to solve this problem. The column generation [6,

22, 91] is a well known method to solve the big problem. And in our problem, originally the BRUE

constraints are complementary nonlinear constraints, we make transform for them and make them

to the mixed integer linear problem(MILP). Because of the integer introduced to our model, we

also use the branch and price method [74, 5] to solve our problem.

And in our models, we also use a method to �nd thekth shortest path in a known network. we

found some former researchers who also get some results for this. The �rst article for this problem

was done by Hoffman and Pavley [38] in 1959. Yen [98] did this in year 1971, the author gave us

a method that with the computational linear time relations to the number ofk. Am et al.'s work

[88] gave us a method to �nd out all of the pathes by order between two nodes in the network, and

apparently it can also �nd out thekthshortest path in the system. By using Eppstein's method [28]

we can also �nd out thekth shortest path in timeO(m+ nlogn+ k), wherem is the number edges

in the network andn is the number of nodes in the network. Aljazzar and Leue's work [1] did this

by using the heuristic method to solve this problem. In their methods, we do not need to store the

whole graph in the main memory, just part of the graph need to be generated. So their advantage

is that they do not need too much memory to calculate and also less time for calculation. But their

disadvantage is their method is heuristic method. Also we can �nd some other researcher did the

work in this direction [2, 35, 16, 40, 41]. Because of the work [62], in general, people can only

make choice from 7-2 to 7+2. Thus, we only need to consider the value ofk from 5 to 9.
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We proposed a model for the static transportation path �ow based problem when the evacuation

happens. We supposed that all the users in the system will obey the BRUE constraint. We totally

consider about four cases 1, Best case without the price. 2, Worst case without the price. 3, Best

case with the price. 4, Worst case with the price. For the �st two cases, we want to �nd if we do not

introduce the price to our system, how best and how worst the total system can be under BRUE. For

the last two cases, we tried to �nd out the situations when we introduce the pricing strategy to the

system. In our model, �rst we changed the originally nonlinear constraints to the MILP constraints

in order to use the cplex to solve. But now the objective function is still a quadratic form. The

cplex still can not be used directly, then we make the linear transform as the �rst level's algorithm.

After this our model become the robust MILP optimization problem. Then we use the algorithm 4

for the robust part. This algorithm is our second level algorithm. After this, we change our problem

to a MILP problem with huge number of variables and huge number of constraints. We use our

algorithm 5 as the third level algorithm to �nd and check the convergency for the columns and then

use the algorithm 6 and algorithm 7 to �nd and check the convergency for the constraints.

Overall, our original problem is a nonlinear problem with huge variables and huge constraints.

After our method, we �rst succussed change our problem to MILP robust optimization problem.

And then use the linearization and other methods to decompose our problem to just a normal MILP

problem which can be solved with cpelx. Our model is a path �ow based model, which is the ac-

tually model for the BRUE problem. Lou's work [56] is arc �ow based model, in their model, the

feasible region is smaller than the actually feasible region. So their optimal solutions are actually

an upper bound for the best cases and lower bound for the worst cases. But our model can get the

real optimal solution. So by using our model and method, we can get the optimal solutions for the

static transportation problem.
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As a reminder, section 3 is our static model section, it includes �ve subsections. The �rst four

subsections are the relative subsections for the four cases. The �fth subsection is to compare our

model with Lou's model [56]. Section 3 is the theorem, which will be used in the algorithm. Sec-

tion 3 is our algorithm section, we totally have four algorithms, they are relatively to the four level

iterations. Section 3 is the experimental results for four node example, nine node example and

sioux network. The �nal section is the conclusion and future work.

BRUE For the Static Network Models

We proposed totally four conditions for our static models. In �rst two conditions, we do not use

the pricing strategy to optimize our system. In the last two conditions, we illustrated the pricing

strategy to see how the system will work. And for the worst case by using pricing strategy, we will

have a robust optimization model.

Case 1, For the best condition without the surplus priceb.

In this case we will make the model for the best condition without using the price to system. The

model is in follows,

(B-BRUE):

minå
r

å
(od)2(OD)

å
wod2WOD

å
(i; j)2(I ;J)

(a i j ;wod � gi j � xr ;(od);wod
) (3.1a)

s.t. å
wod2WOD

xr ;(od);wod
= Dr ;od; 8r ; (od) 2 (OD) (3.1b)

gi j = ci j + ki j � f p
i j ; 8(i; j) 2 (I ;J) (3.1c)
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fi j = å
(od)2(OD)

å
wod2WOD

å
r

(a i j ;wod � xr ;(od);wod
); 8(i; j) 2 (I ;J) (3.1d)

xr ;(od);wod
� ( å

(i; j)2(I ;J)

(a i j ;wod � gi j ) � Uod � r ) � 0; 8r ; (od) 2 (OD);wod 2 WOD

(3.1e)

å
(i; j)2(I ;J)

(a i j ;wod � gi j ) � Uod � 0; 8(od) 2 (OD);wod 2 WOD (3.1f)

xr ;(od);wod
� 0; 8r ; (od) 2 (OD);wod 2 WOD (3.1g)

(3.1a) is the objective function contains the summation of all arcs' �ows times the time cost on that

arc. (3.1b)(3.1c)(3.1d) are the relative constraints for the demand, time cost function and the time

cost for arc(i j ). (3.1e) and (3.1f) are the BRUE constraint. (3.1g) is the constraint to let all of the

�ows to be nonnegative.

Case 2, For the worst condition without the surplus priceb.

In this case we will make the model for the worst condition without using the price to system. The

model is in follows,

(W-BRUE):

maxå
r

å
(od)2(OD)

å
wod2WOD

å
(i; j)2(I ;J)

(a i j ;wod � gi j � xr ;(od);wod
) (3.2a)

s.t. å
wod2WOD

xr ;(od);wod
= Dr ;od; 8r ; (od) 2 (OD) (3.2b)

gi j = ci j + ki j � f p
i j ; 8(i; j) 2 (I ;J) (3.2c)

fi j = å
(od)2(OD)

å
wod2WOD

å
r

(a i j ;wod � xr ;(od);wod
); 8(i; j) 2 (I ;J) (3.2d)

xr ;(od);wod
� M � zr ;(od);wod

(3.2e)

xr ;(od);wod
� � M � (1� zr ;(od);wod

) + d (3.2f)
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å
(i; j)2(I ;J)

(a i j ;wod � gi j ) � Uod � r � M � (1� zr ;(od);wod
);8r ; (od) 2 (OD);wod 2 WOD

(3.2g)

å
(i; j)2(I ;J)

(a i j ;wod � gi j ) � Uod � 0; 8(od) 2 (OD);wod 2 WOD (3.2h)

xr ;(od);wod
� 0; 8r ; (od) 2 (OD);wod 2 WOD (3.2i)

We can know that actually in these two models, the only difference should be just the �rst one is

to make minimization of the objective function and the second one is to make maximization of the

objective function. But we make another form for the second case. In the �rst case, our model

for the BRUE constraint is nonlinear constraint. But in the second case, we change our model

to a linear model by illustrating the bigM method. But actually they show the same constraints.

(3.2e)(3.2f)(3.2g)(3.2h) are the constraints to ful�ll this. Hered is a small positive value.

Case 3, For the best condition with the surplus priceb.

In this case we will make the model for the best condition by using the price to system. The model

is in follows,

(BP-BRUE):

min
b

min
x;z å

r
å

(od)2(OD)
å

wod2WOD

å
(i; j)2(I ;J)

(a i j ;wod � gi j � xr ;(od);wod
) (3.3a)

s.t. å
wod2WOD

xr ;(od);wod
= Dr ;od; 8r ; (od) 2 (OD) (3.3b)

gi j = ci j + ki j � f p
i j ; 8(i; j) 2 (I ;J) (3.3c)

fi j = å
(od)2(OD)

å
wod2WOD

å
r

(a i j ;wod � xr ;(od);wod
); 8(i; j) 2 (I ;J) (3.3d)
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xr ;(od);wod
� M � zr ;(od);wod

(3.3e)

xr ;(od);wod
� � M � (1� zr ;(od);wod

) + d (3.3f)

å
(i; j)2(I ;J)

(a i j ;wod � gi j ) + b � Uod � r � M � (1� zr ;(od);wod
);8r ; (od) 2 (OD);wod 2 WOD

(3.3g)

å
(i; j)2(I ;J)

(a i j ;wod � gi j ) + b � Uod � 0; 8(od) 2 (OD);wod 2 WOD (3.3h)

xr ;(od);wod
� 0; 8r ; (od) 2 (OD);wod 2 WOD (3.3i)

This is add the price to the system, we add the minimization ofbetato the objective function, and

also add the priceb to the relative constraint. (3.3g)(3.3h) are the constraints have relation with

beta.

Case 4, For the worst condition with the surplus priceb.

In this case we will make the model for the worst condition by using the price to system. The

model is in follows, it is a robust optimization model.

(WP-BRUE):

min
b

max
x;z å

r
å

(od)2(OD)
å

wod2WOD

å
(i; j)2(I ;J)

(a i j ;wod � gi j � xr ;(od);wod
) (3.4a)

s.t. å
wod2WOD

xr ;(od);wod
= Dr ;od; 8r ; (od) 2 (OD) (3.4b)

gi j = ci j + ki j � f p
i j ; 8(i; j) 2 (I ;J) (3.4c)

fi j = å
(od)2(OD)

å
wod2WOD

å
r

(a i j ;wod � xr ;(od);wod
); 8(i; j) 2 (I ;J) (3.4d)
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xr ;(od);wod
� M � zr ;(od);wod

(3.4e)

xr ;(od);wod
� � M � (1� zr ;(od);wod

) + d (3.4f)

å
(i; j)2(I ;J)

(a i j ;wod � gi j ) + b � Uod � r � M � (1� zr ;(od);wod
);8r ; (od) 2 (OD);wod 2 WOD

(3.4g)

å
(i; j)2(I ;J)

(a i j ;wod � gi j ) + b � Uod � 0; 8(od) 2 (OD);wod 2 WOD (3.4h)

xr ;(od);wod
� 0; 8r ; (od) 2 (OD);wod 2 WOD (3.4i)

This is a robust optimization model, which we need to �rst make the minimization for the priceb

and then make the maximization for the path �owsx.

As we given before the �ows on arc(i; j) are fi j = å r å od2ODå wod2WOD
a i j ;wod � xr ;(od);wod

. The

time function for the arc(i; j) is T(i j ) = bi j + ki j � fi j . And T(wod) = å (i j )2(IJ) a i j ;wod � T(i j ),

T(wod) is the time cost for the pathwod. Now the total system time cost function isf (x) =

å (i j )2(IJ) T(i j ) � fi j .

We can get the result

Gradient off (x):

Ñxi f (x) = 2� T(wod) � å
(i j )2(IJ)

a i j ;wod � bi j (3.5)

To be simplify, we suppose in our system we only have one group of people who have the same

boundedly rational coef�cientr and one(OD) pair. There are totallyn possible pathes in the
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system. The time cost for each path denoted asf T(1);T(2); � � � ;T(k);T(k+ 1); � � � ;T(n)g. Only

the �rst k path has �ows. Now the relative formulations becomes

Simplify formulations :

fi j =
n

å
i= 1

a i j ;i � xi (3.6a)

T(i j ) = bi j + ki j � fi j (3.6b)

T(i) = å
(i j )2(IJ)

a i j ;i � T(i j ) (3.6c)

f (x) = å
(i j )2(IJ)

" 
n

å
i= 1

a i j ;i � xi

!

�

 

bi j + ki j �
n

å
i= 1

a i j ;i � xi

!#

(3.6d)

Ñxi f (x) = 2� T(i) � å
(i j )2(IJ)

a i j ;i � bi j (3.6e)

In order to use the algorithms in the following, we want to �rst show the theorem 1, 2, 3

Theorem1. The optimal solution for the maximization problem must have the property that

max
1� i; j � k

f jT(i) � T( j)jg = r

For the non-trivial conditions.Proof.

First, because of the constraints for the BRUE restrictions we must have

max
1� i; j � k

f jT(i) � T( j)jg � r
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Second, suppose if

max
1� i; j � k

f jT(i) � T( j)jg < r

Then Without loss of generality, we can suppose

T(1) �
1
2 å

(i j )2(IJ)

a i j ;1 � bi j � T(2) �
1
2 å

(i j )2(IJ)

a i j ;2 � bi j � � � � � T(k) �
1
2 å

(i j )2(IJ)

a i j ;k � bi j

For as > 0, we can let

x
0
(k) = x(k)+ s � 0;

x
0
(1) = x(1) � s � 0;

x
0
(i) = x(i) � 0; 8i = 2;3; � � � ;k � 1;k+ 1; � � � ;n

We denote

4 T(i) = T
0
(i) � T(i)

as the difference of the time cost for the pathi when we change the solution fromx to x
0
. Then we

can know that

4 T(i) = å
(i j )2(IJ)

k(i j ) � a i j ;i � a i j ;1 � (� s )+ å
(i j )2(IJ)

k(i j ) � a i j ;i � a i j ;k � s = K(i) � s

WhereK(i) is the relative constant coef�cient for the pathi.

K(i) = å
(i j )2(IJ)

k(i j ) � a i j ;i � (a i j ;k � a i j ;1) � s

56



We can know that4 T(1) � 0;4 T(k) � 0, this is because

a i j ;1 � (a i j ;k � a i j ;1) = a i j ;1 � (a i j ;k � 1) � 0

a i j ;k � (a i j ;k � a i j ;1) = a i j ;k � (1� a i j ;1) � 0

k(i j ) � 0 ; s > 0

Then

4 T(1) = K(1)s � 0

4 T(k) = K(k)s � 0

We know that

�
�
�T

0
(i) � T

0
( j)

�
�
� = jT(i) + 4 T(i) � T( j) � 4 T( j)j � jT(i) � T( j)j + j4 T(i) � 4 T( j)j

Then

max
1� i; j � k

f
�
�
�T

0
(i) � T

0
( j)

�
�
�g � max

1� i; j � k
f jT(i) � T( j)j + j4 T(i) � 4 T( j)jg

� max
1� i; j � k

f jT(i) � T( j)jg+ max
1� i; j � k

f j4 T(i) � 4 T( j)jg

And because

j4 T(i) � 4 T( j)j = j(K(i) � K( j)) j � s

So

max
1� i; j � k

f j4 T(i) � 4 T( j)jg = f max
1� i; j � k

f j(K(i) � K( j)) jgg �s = Ks
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Where

K = max
1� i; j � k

f j(K(i) � K( j)) jg

is a constant value, as we suppose before,

max
1� i; j � k

f jT(i) � T( j)jg < r

So we can always �nd small enoughs to let

max
1� i; j � k

f
�
�
�T

0
(i) � T

0
( j)

�
�
�g < r + Ks

max
1� i; j � k

f
�
�
�T

0
(i) � T

0
( j)

�
�
�g � r

It means that the current solutionx
0
are also a feasible solution to the primal BRUE problem. And

as we know, if now the solutionx is the optimal solution for the maximization problem. We can

get the optimal value as

f (x
0
) = f (x)+ Ñ f (x) � (x

0
� x)

= f (x)+ 2

 

T(k) �
1
2 å

(i j )2(IJ)

a i j ;k � bi j

!

s � 2

 

T(1) �
1
2 å

(i j )2(IJ)

a i j ;1 � bi j

!

s

> f (x)

It is contradict to the conclusion x is the optimal solution for the maximization problem. So the

former suppose

max
1� i; j � k

f jT(i) � T( j)jg < r

is not right. So we can just have

max
1� i; j � k

f jT(i) � T( j)jg = r
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Proved

Theorem2. For minimization problem, if

max
1� m;l � n

�
�
�
�
� å
(i j )2(IJ)

�
a i j ;m � a i j ;l

�
� bi j

�
�
�
�
�
< 2r (3.7a)

then we can always �nd an optimal solution has the following property

T(m) �
1
2 å

(i j )2(IJ)

a i j ;m � bi j = T; 8f mjxm > 0g (3.7b)

max
1� i; j � k

f jT(i) � T( j)jg < r (3.7c)

T(l ) �
1
2 å

(i j )2(IJ)

a i j ;l � bi j � T; 8f l jxl = 0g (3.7d)

Else if

max
1� m;l � n

�
�
�
�
� å
(i j )2(IJ)

�
a i j ;m � a i j ;l

�
� bi j

�
�
�
�
�
� 2r (3.7e)

then

max
f m;l jxm;xl > 0g

jT(m) � T(l )j = r (3.7f)

Proof.

If the formulation (3.7a) happens, suppose the condition (3.7b) is not right. And now the optimal

solution isx. If now

max
f m;l jxm;xl > 0g

jT(m) � T(l )j < r

Then similar as the prove in Theorem 1, without loss of generality, we can �ndf p;qjxp;xq > 0g to
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let

T(p) �
1
2 å

(i j )2(IJ)

a i j ;p � bi j > T(q) �
1
2 å

(i j )2(IJ)

a i j ;q � bi j

and to let

x
0
(p) = x(p) � s � 0;

x
0
(q) = x(q)+ s � 0;

x
0
(i) = x(i) � 0; 8i = 1;2;3; � � � ;n;and i6= p;q

with

4 T(p) � 0;4 T(q) � 0

From the prove of Theorem 1, now the solutionx
0
is also a feasible solution for the minimization

problem.

The new objective value is

f (x
0
) = f (x)+ Ñ f (x) � (x

0
� x)

= f (x)+ 2

 

T(p) �
1
2 å

(i j )2(IJ)

a i j ;p � bi j

!

(� s )+ 2

 

T(q) �
1
2 å

(i j )2(IJ)

a i j ;q � bi j

!

s

< f (x)

Contradict to the conclusionx is the optimal solution for the minimization problem.

Else if

max
f m;l jxm;xl > 0g

jT(m) � T(l )j = r
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We denote the pair as(p;q). Without loss of generality, we can suppose

T(p) �
1
2 å

(i j )2(IJ)

a i j ;p � bi j > T(q) �
1
2 å

(i j )2(IJ)

a i j ;q � bi j (3.8)

We also make the same change for the variablex. Then ifT(p) � T(q), we have

T(p) � T(q) = r ;4 T(p) � 0;4 T(q) � 0

so nowT
0
(p) � T0(q) � r .

Else ifT(p) � T(q), then we can know thatT(q) � T(p) = r , from condition (3.8), we can get

r = T(q) � T(p) <
1
2 å

(i j )2(IJ)

a i j ;q � bi j �
1
2 å

(i j )2(IJ)

a i j ;p � bi j

contradict to our primal suppose formulation (3.7a). So this condition can not be happen.x
0

is

feasible for the problem. Then similar as before, we can know thatx is not the optimal solution

which is contradict to the former suppose. So in any cases we discussed, we must have the condi-

tion (3.7b).

Suppose condition (3.7c) is not right, then

max
1� i; j � k

f jT(i) � T( j)jg = r

To let

max
1� i; j � k

f jT(i) � T( j)jg = jT(p) � T(q)j

Because of (3.7b), we will have

�
�
�
�
� å
(i j )2(IJ)

�
a i j ;p � a i j ;q

�
� bi j

�
�
�
�
�
= 2r

61



Which is contradict with (3.7a). So (3.7c) is proved.

Suppose the condition (3.7d) is not right. Then for somef l jxl = 0g,

T(l ) �
1
2 å

(i j )2(IJ)

a i j ;l � bi j < T = T(m) �
1
2 å

(i j )2(IJ)

a i j ;m � bi j (3.9)

Wheremthe index that to letxm > 0. We can �nd small enoughs to get the following transforms

x
0
(l ) = s > 0;

x
0
(m) = x(m) � s � 0;

x
0
(i) = x(i) � 0; 8i = 1;2;3; � � � ;n;and i6= l ;m

If T(l ) � T(m), obviously, we have the solutionx
0
is also feasible. Else ifT(l ) � T(m) From (3.9)

we can get

T(l ) � T(m) <
1
2 å

(i j )2(IJ)

a i j ;l � bi j �
1
2 å

(i j )2(IJ)

a i j ;m � bi j < r

And because of (3.7c) and the prove of Theorem 1, we know that nowx
0
is feasible. And obviously

f (x
0
) < f (x)

It is contradict tox is the optimal solution. So the condition (3.7d) is right.

The prove of (3.7f) is similar with the prove of Theorem 1. We do not list the details here.

Theorem3. For the minimization problem, when ther is increasing, the objective function value

will be strictly decreasing forr � r , and whenr > r , the objective function value will keep the
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same. Where

r =
1
2

max
1� m;l � n

�
�
�
�
� å
(i j )2(IJ)

�
a i j ;m � a i j ;l

�
� bi j

�
�
�
�
�

(3.10)

Proof. Whenr > r , it is just the condition(3.7a), actually the optimal solution has no relation with

r , in such cases, the BRUE constraints actually are redundant. So even though the value ofr is still

increasing, the objective value will keep the same. Whenr > r , it is just the condition(3.7f), now

we can know that whenr increasing, the feasible region is also strict enlarged, and the enlarged

part of the feasible region is also be used, so the objective value is strictly increasing.

Lemma1.

Counter part for the Difference Between Path Flow And Link-based Flow Distribution

By using the example in Lou's work [56], the data was shown in Table 3.1. The network picture

was shown in 3.2.
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Figure 3.1: Parameters For the Four Nodes Example

Figure 3.2: Four Nodes Flow Distribution

Link Time

function(T(i j ))

Path Relative Vari-

ables

(1,3) 3+f13 1-3-4 x1

(1,2) 7+f12 1-3-2-4 x2

(2,3) 0+f23 1-2-4 x3

(2,4) 5+f24 1-2-3-4 x4

(3,2) 0+f32

(3,4) 2+f34
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If we set the �ow capacity for each path to be 1. Then we can get the solution for case 1 of this

problem as it shown in the table. But if we use the model presented in Lou's work. It will be

infeasible for the potential value of the node 3 and 2. It is because if we set the potential of node 3

and 2 asx;y. Then we will have the following constraint.

s.t.9� 5 � x (3.11a)

7� 4 � 4� x (3.11b)

8� 6 � y (3.11c)

6� 5 � 4� y (3.11d)

Obviously, this is no feasible solution for this part. So These two model are not equals at least for

the minimum problem.

Algorithm

Actually for our robust optimization problem, we can simplify to write our our model as follows,

(WP-BRUE):

min
b

max
x;z

f (x;z) = xTDx+ dx+ e (3.12a)

s.t.Ax+ Bz+ Cb � R (3.12b)
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(WP-BRUE):

min
b

max
x;z

f (x;z) = xTDx+ dx+ e (3.13a)

s.t.Ax+ Bz+ Cb � R (3.13b)

To simplify, actually the problem WP-BRUES, WP-BRUEM has a lot of constraints and variables

like the follows.

(BRANCHP):

max
x;z

f (x;z) = eTx (3.14a)

s.t.Anx+ Bnz� Rn (3.14b)

We can use our algorithm 3 to �rst make the linearization of our objective function. Then use the

algorithm 4 to make the robust part min-max to a master problem and a sub problem we can solve

these two problems separately by using the algorithm 5. Then at last after the four level iterations,

we can get our result for our case 4 problem. And for other three cases, actually we can just use

part of the algorithms we posted to solve it.

To simplify state the problem for B-BRUE and W-BRUE, we can write the problem as the follows,

(P):

min
xln;zln

å
l
å
n

cT
lnxln (3.15a)

66



s.t.å
l
å
n

Aln;lnxln + å
l
å
n

Bln;lnzln � bln;8ln (3.15b)

å
n

El ;lnxln = Dl ;8l (3.15c)

WhereAln;ln 2 Rln� ln, because this problem has huge number ofln, we can not solve it directly, so

we want to solve a subproblem of it, we just consider about the �rstlk pathes in the system. We

call it SPproblem. And we de�ne thatlk 2 J; ln=lk 2 J
0
, J is the set thatf xlk > 0;zlk = 1jlk 2 Jg

(SP):

min
xlk

;zlk
å
l
å
k

cT
lkxlk (3.16a)

s.t.å
l
å
k

Alk;lkxlk + å
l
å
k

Blk;lkzlk � blk;8lk (3.16b)

å
k

El ;lkxlk = Dl ;8l (3.16c)

(SPC):

min
xlk

;zlk
å
l
å
k

cT
lkxlk (3.17a)

s.t.å
l
å
k

Alk;lkxlk + å
l
å
k

Blk;lkelk � blk;8lk (3.17b)

å
k

El ;lkxlk = Dl ;8l (3.17c)

Whereelk is a vector haslk elements with 1.

As the de�nition of the setJ above, we know thatSP= SPC. And we also establish two other

problems. calledSPC1 andSPC2.
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(SPC1):

min
xlk

;zlk
å
l
å
k

cT
lkxlk + å

l
clk+ 1xlk+ 1 (3.18a)

s.t.å
l
å
k

Alk;lkxlk + å
l
å
k

Blk;lkelk+

å
l

alk;lk+ 1xlk+ 1 + å
l

blk;lk+ 1 � blk;8lk (3.18b)

å
k

El ;lkxlk = Dl ;8l (3.18c)

(SPC2):

min
xlk

;zlk
å
l
å
k

cT
lkxlk (3.19a)

s.t.å
l
å
k

Alk;lkxlk + å
l
å
k

Blk;lkelk � blk;8lk (3.19b)

å
l

alk+ 1;lkxlk + å
l

blk+ 1;lkelk � blk+ 1; (3.19c)

å
k

El ;lkxlk = Dl ;8l (3.19d)

(SPCN1):

min
xln;zln

å
l
å
n

cT
lnxln (3.20a)
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s.t.å
l
å
n

Alk;lnxln + å
l
å
n

Blk;lnzln � bln;8lk (3.20b)

å
n

El ;lnxln = Dl ;8l (3.20c)

(SPCN2):

min
xlk

;zlk
å
l
å
k

cT
lkxlk (3.21a)

s.t.å
l
å
k

Aln;lkxlk + å
l
å
k

Bln;lkelk � blk;8ln (3.21b)

å
k

El ;lkxlk = Dl ;8l (3.21c)

And we also use the following model to choose the minimum reduce cost of the problem to deter-

mine which path we will choose to add the system.

(RC):

min
a i j

å
(i j )

[(l i j � 1=2ci j )a i j � pT l i j a i j ] (3.22a)

s.t.å
j

a i j = å
j

a ji ;8i 6= o; i 6= d (3.22b)

å
j

ao j = 1;å
j

a jd = 1; (3.22c)

a i j 2 Bin;8(i j ) (3.22d)

Wherep is the dual value for problemSPC.

And we will also use the algorithm 6 to �nd out which constraints we need to add to our model
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SPC2 for our system.

Theorem4. If SPC1 = SPC2, thenSPC= P. Where the new series of columns to add is the path

with the maximum reduce cost of problemRC. And the new series of constraints to add to the

system is the time cost for the path with the minimum time cost except thelk pathes that already

existed after current iteration forOD pair l .

Proof. As we know we will have the following relationSPC2 � SPC� SPC1. This is because �rst

the feasible region forSPCis actually a subset withSPC1 for which to let the variablexlk to be zero

in SPC, so for minimization problem,SPC� SPC1. Second, the only difference of the feasible

region withSPCandSPC2 is thatSPC2 has a new serious of constraints. SoSPC2 � SPC.

Now if SPC1 = SPC2, it meansSPC1 = SPC= SPC2. The new serious of columns were chose

to add fromSPCto SPC1 is from the maximum reduce cost, so ifSPC1 = SPC, it means that

SPC= SPCN1. And the new serious of constraints is the constraints that violate most for the left

pathes. IfSPC2 = SPC, it means that the most possibly violation constraints are still within the

current feasible region. So nowSPC= SPCN2 and thenSPCN1 = SPC= SPCN2. Also as we know

SPCN1 � P � SPCN2. Then now we will haveSPCN1 = P = SPC= SPCN2. SoSPC= P.

As we illustrated above we totally have four levels of optimizations, we �nd actually we do not

need the accuracy too much in the lower levels when the higher levels are just in the beginning

several iterations. It means for the �rst several iterations of the higher levels we just need coarse

control by calculating the lower levels. But together with the iterations become larger especially

the last several iterations for the outer level, we need �ne control by calculating the inner levels,

that means we need to set the small tolerance for the check of convergency of the lower iterations.
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Algorithm 3 LINEARIZATION

Step 0: Selectx(1) 2 X such that

Anx+ Bnz+ Cnb � Rn:

Setk = 1.

Step 1:Solve the following robust mixed linear problem:

T(x) = min
b

max
x;z

xkT
Dnxk + dTxk(Dnxk)T(x� xk)

s.t. Anx+ Bnz+ Cnb � Rn

x � 0;z2 Bin

and letx� = yk;b k;zk as the optimal solution.pk = yk � xk is the resulting search direction.

Step 2:Convergency Check:
Let LBD = maxf LBD;T(xk)g. If

T(xk) � LBD
LBD

< e;

then stop andb k;xk;zk is the solution. Else

Step 3:Line search.
Find a step lengthlk which solves the following problem,

minf T(xk + lpk)j0 � l � 1g:

Updatexk+ 1 = xk + lkpk. k = k+ 1, and go to step 1

Result

Simple Example

First we solve our models under a simple example, the data is from Lou's article [56]. it just has

four nodes and six arcs in the system. The relative �gure and data are shown in Figure 3.2 and

Table 3.1, and we add an allowance for the surplus price is that the bound for the price is in[� 1;1].
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Algorithm 4 Robust Transform

Step 0: Selectb(1) 2 B: Setm= 1.UB = M;LB = � M

Step 1:Solve WP-BRUES:

(WP-BRUES):

max
x;z

T(x) = eTx (3.23a)

s.t.Anx+ Bnz+ Cnbm � Rn (3.23b)

We can getxm+ 1,zm+ 1 andpm+ 1. SetUB = minf UB;T(xm+ 1)g.

Step 2:Solve WP-BRUEM:

(WP-BRUEM):

min
b

T(x̃) = eT x̃ (3.24a)

s.t.Anx̃+ Bnz̃+ Cnb � Rn (3.24b)

eT x̃ � eT x̃ j ; 1 � j � m (3.24c)

Anx̃ j + Bnz̃j + Cnb � Rn; 1 � j � m (3.24d)

AnTp j � eT (3.24e)

x̃ j (AnTp j � eT) = 0 (3.24f)

p j (Rn � Anx̃ j � Bnz̃j � Cnb) = 0 (3.24g)

We can getbm+ 1 andx̃. Let LB = T(x̃). If

UB� LB
LB

< e;

then stop andbm+ 1;xm+ 1k;zm+ 1 is the solution. Elsem= m+ 1, go to step 1.

The results are shown in table 3.1, in this table the meaning of iteration rowi � j � k means the

relative iterations by using the algorithms 1 isi, algorithm 2 isj, algorithm 3 isk. And ĩ means the

approximate times for the iteration of that algorithm, because for different outer iterations, we will
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Algorithm 5 Convergency for Big Problem

Step 0: Setk = 1.

Step 1:Solve the problemSPC, if all of the variablexlk > 0. Go to step 3, else go to step 2.

Step 2:Delete all of the variables with the optimal value of 0 from the set J, then go to step 1.

Step 3:Solve the problemRC, insert the new founded path to setJ.

Step 4:Solve the problemSPC1 to get the lower bound ofSPCas LB, and solve the problem
SPC2 to get the upper bound ofSPCas UB. If

UB� LB
LB

< e

stop,else go to step 1.

Algorithm 6 Add Constraint
In this algorithm we want to �nd out the shortest path for theOD pair l except the known path
l1; l2; � � � ; lk.

Step 0: Set p=1. Make the order ofl1; l2; � � � ; lk from lower to higher. Without loss of generality,
we can assumel1 � l2 � � � � lk. Set the time for the pathl i asTl i for i = 1;2; � � � ;k.

Step 1: Find thepthshortest path betweenOD pair l . The time for this path isTl0p

Step 2: If Tl0p
= Tlp, p = p+ 1. Go to step 1.

Else setlk+ 1 = l
0

p, stop

have different inner level iterations to be converge.

We can see from the table that by introducing the pricing strategy, we can make the system work

better.

We can get the relative improvement by introducing the price for the best and worst case are rela-

tively 0.38% and 0.82%. The improvement is not very large, this is because we mandatory to set

the scale of the price within a certain scale.
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Algorithm 7 pthshortest path
In this algorithm we want to �nd out thepthshortest path for theOD pair l . And set therth shortest
path aslr

Step 0: Setq = 1.

Step 1: If q � p, set the time cost of one arc on pathlr to be bigM for everyr = 1;2; � � � ;q� 1:
Then calculate the shortest path in the new network. and set the newly time asTi for the ith
combinations. After we calculate all of the possible combinations of different arcs on pathlr ; r =
1;2; � � � ;q� 1: We can choose theTi with the minimum value asTq and set the relative path of it
is lq. q = q+ 1. Go to step 1.
Else stop.

Table 3.1: The Results of Four Nodes Example

Case1 Case2 Case3 Case4

Total cost 49.82 51.31 49.63 50.89

Iteration 1*1*3 4*1*3 1*1*3 5*6̃*3̃

Time spend(s) 0.76 1.93 0.82 6̃0

Check the Theorems

In this example, there are totally four pathes, we set them as path 1;2;3;4;. We set the D=30.

And the relatively12 å (i j )2(IJ) a i j ;1 � bi j = 2:5, 1
2 å (i j )2(IJ) a i j ;2 � bi j = 4, 1

2 å (i j )2(IJ) a i j ;3 � bi j = 6,

1
2 å (i j )2(IJ) a i j ;4 � bi j = 4:5. Then

r = max
1� m;l � n

�
�
�
�
� å
(i j )2(IJ)

�
a i j ;m � a i j ;l

�
� bi j

�
�
�
�
�
= 3:5

The calculation results for differentr are shown in table 3.2.
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Table 3.2: The Results of Four Nodes Example

r 3.3 3.4 3.5 3.6
x1 15.8625 15.8375 15.8125 15.8125
x2 0.125 0.125 0.125 0.125
x3 14.0125 14.0375 14.0625 14.0625
x4 0 0 0 0
T1 36.85 36.8 36.75 36.75
T2 38.25 38.25 38.25 38.25
T3 40.15 40.2 40.25 40.25
T4 38.875 38.875 38.875 38.875

T1 � 1
2 å (i j )2(IJ) a i j ;1 � bi j 34.35 34.3 34.25 34.25

T2 � 1
2 å (i j )2(IJ) a i j ;2 � bi j 34.25 34.25 34.25 34.25

T3 � 1
2 å (i j )2(IJ) a i j ;3 � bi j 34.15 34.2 34.25 34.25

T4 � 1
2 å (i j )2(IJ) a i j ;4 � bi j 34.375 34.375 34.375 34.375

f (x) 1151.916 1151.908 1151.906 1151.906

All of the data accords with the theorems.

Nine Nodes Example

The data we use is still from the article [56], and the the network is shown in �gure 2. We can see

from the result that the relative improvement by introducing the price for the best and worst case

are relatively 1.82% and 2.01%
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Figure 3.3: The nine nodes network

Table 3.3: The Results of Nine Nodes Example

Case1 Case2 Case3 Case4

Total cost 2347.15 2532.68 2305.74 2481.89

Iteration 1*1 7*1 1*1 6*1̃1

Time spend(s) 1.02 5.88 1.32 ˜180

Sioux Fall System

Table 3.4 is the result with two original places and two destinations, so totally have 4OD pairs.

Figure 3.4 gives us the compare for different boundedly rationality coef�cientr 's in�uence to our

system. Such results are got by not using the algorithm 6 and 7. We just still check the path for
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the constraints that get from the column generation. But actually such method can not guarantee

us this is a convergency result for our initially problem. This just give us a comparison result. And

the calculation time for Case 4 are just about 2 hours.

Table 3.4: The Results for Sioux Fall network with 4 OD pairs

Total Cost Case1 Case2 Case3 Case4

r = 0:05 2347.66 2446.37 2311.49 2370.36

r = 0:1 2312.59 2502.38 2297.68 2386.76

r = 0:2 2298.28 2715.69 2295.46 2462.38

Figure 3.4: The Sioux Fall Network

So we still want to add our algorithm 6 and 7 to our system. These results are shown in table 3.5, in

such results we can �nd that, all of the best cases of our problem we have higher results compare
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to the former method, and all of the worst cases of our problem we can get lower results. This

is because when we use the former method, actually we just check the rightness for the column

generation, so our results actually is the results forSPC1. Here for the best case, it is the lower

bound for the real results, and for worst case it is the upper bound for the real results. The �gure

3.5 shows the relations for the new method. And we give an upper bound of the number of pathes

for �nding the new pathes to add to check the convergency for the constraints as 15. We can �nd

from the two tables that the most relative difference of the two method is 0:4%. It is not a big

difference, but still the new method is more close to the real result. But the calculation time for

case 4 is about 33 hours. It is more than the former method.

Table 3.5: The Results for Sioux Fall Network With 4 OD Pairs By Add Constraints

Total Cost Case1 Case2 Case3 Case4

r = 0:05 2352.45 2444.58 2313.22 2365.18

r = 0:1 2314.29 2495.26 2304.43 2382.47

r = 0:2 2306.76 2703.72 2299.28 2453.28
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Figure 3.5: The Sioux Fall Network 2

Then we �nd out that because we have totally four levels of iterations, so actually for the beginning

several iterations of the outer levels, actually we do not need to require the high accuracy for the in-

ner level. By introducing this to our algorithms. We change the number of 15 we mentioned above

to 5 for the �rst ten iterations of our Linearization level, and still keep 15 for the last iterations of

the �rst level. Then we get some new results below, we can know from the table 3.6 that the most

relative different between these two methods is only 0.04%. But this can save a lot of calculation

time for our problem. The calculation time for case 4 is about 21 hours. But how to get the most

ef�cient and accuracy for setting the convergency, it still need us to have further research. Here

is just an illustration that we can get the similar results compared by using the same convergency

principles.
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Table 3.6: The Results for Sioux Fall Network With 4 OD Pairs By Add Constraints With Different
Accuracy

Total Cost Case1 Case2 Case3 Case4

r = 0:05 2353.16 2444.29 2313.76 2365.88

r = 0:1 2313.79 2496.32 2304.12 2381.86

r = 0:2 2306.22 2703.34 2299.76 2453.43

Figure 3.6: The Sioux Fall Network 3

Then this is the results with multiple OD pairs, the pairs were shown in [52]. We user = 0:1. And

for each level, we set the tolerance to be 2%, then results were shown in table 3.7. We did not use

the algorithm for this problem. And the time for calculation is about 10 hours.
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Table 3.7: The Results for Sioux Fall network with multiple OD pairs

Total Time Cost Case1 Case2 Case3 Case4

33468.1 35776.3 32867.4 34368.7
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CHAPTER 4: INFORMATION NETWORK CASCADING

ANDNETWORK RE-CONSTRUCTION WITH BOUNDEDLY

RATIONALUSER BEHAVIORS

NOMENCLATURE

A. Sets, Indices for the Equilibrium Model

N Set of users index by i,j,k

L Set of information indexed byl

i Index of information provider

B. Parameters

p jl Information post plan of userj

dki The value for the connection bene�t to useri if followed by userk

vkl Value of informationl to userk

bkl Unit boring value for user k to receive informationl for multiple times

Tjl Threshold for userj to re-post informationl

x̂i j Initial network connection for useri follows to userj

r j BRUE coef�cient for userj

cl Posting cost for informationl

Bi Budget for information provideri

C. Variables
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p jl Binary variable for userj whether to post or re-post informationl

xk j Binary variable for userk whether to follow userj

zkl Number of times for userk to receive informationl

gkl Binary variable for userk whether to receive informationl

Uk Total information utility for userk

Ukl Information utility for userk from informationl

D. Function

Fkl(�) Relation function forUkl respect tozkl for userk with informationl

G(�) Linear threshold function for user's re-post decisionp jl respect to information provider's post planpil

Introduction

With the development of information technology, the social media platform plays a vital role in

most people's life. For some commercial users or non-pro�t organizations, their pro�ts or in�u-

ences can increase by using the social media system [57, 65]. Especially for some commercial

users that highly depend on the social media platform such as News Media, YouTuber or We Me-

dia Organization. Lots of people are willing to expand their network connection in social media in

order to expand their in�uences. The number of followers will dramatically in�uence their pro�ts

or in�uences.

The behaviour of user's connectivity to a information provider is primarily in�uenced by two as-

pects [90]: the content of information posted by the information provider[89], and the personality

of the user who follows the information provider. In order to expand the connections of the in-

formation provider, we need to study for what kind of content to post and also study the human
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personality and human behaviours. The increasing rate of the follower will highly depend on what

kind of information they post. We call these users need to make choice for information post plans

as information provider. In this paper, we will optimize the information provider's information

post plan in order to expand the network connections of it. Here, the information post plan means

in one time period the information provider need to decide to post and not post what kind of in-

formation. The other part need to consider is different people will have different personalities,

their interesting items can varies widely. And different people will also have different criteria for

connectivity action.

The in�uence of the information to one user can only be activate if this user can receive the in-

formation. We need to consider about the information cascading route. Linear threshold model

[33, 19, 14] and independent cascading model [46] are two widely used models for information

cascading. in this paper, linear threshold propagation model is used for information cascading.

This model was �rst proposed by Granovetter [34] to describe the people's behaviour. It means

when the linear summation of the in�uence of one user's followees exceed the threshold the this

user. Then this user will become active. In our case, it means when some of one user's followees

re-post the information and the linear summation of these followees in�uence exceed the threshold

of this user, then this user will also re-post this information.

After information cascades in the network, each user in the network will have a decision whether

they have willing to change their followees. Users can get utility from each information, they

want to have a network that can get more information they want to get. But they still want to

avoid multiple times to receive the same information. because it is actually a redundant for them

to get new information. We apply the concept bounded rationality user equilibrium (BRUE) as

the decision principle of user's for actions of connectivity. It means one users want to choose

connective schedule that can help them to achieve higher utility for different information but not

need the maximum utility.
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This idea of BRUE originally comes from Simon's Theory [77] in 1957. In this paper, it tells us

that human behavior will has its bounded rationality. In 1972, Simon published another paper [79]

which gives us an fundamental illustration about the theory of bounded rationality. The rationality

of human beings will have the style of their behaviour's utility to achieve a percentage of the ideal

goals, within the limits by given conditions and constraints. Simon also continuously worked on

bounded rationality [80, 81] to expand the application of the theory.

The concept of bounded rationality can also be used in many �elds, such as the energy system [96],

psychology [44], military [69], transportation [58, 24, 56]and so on [70, 36, 27]. But as far as we

know, fewer people used it on information network system. We suppose that in the information

network system users' action of connectivity will obey BRUE. It means one user do not need to

get the maximum information utility they can theoretically get. They just need their utilities are

greater then a percentage of the maximum utility. They may execute any connection plan's utility

that ful�ll such criteria.

Some researchers used game theory model in social media network to determine the user's decision

[82, 85]. But in the real world, the BRUE model should be more close to the natures compare to

game theory model. First, the users in the information networks system will not take care about

the little difference for their utility function. Second, in the information network system the utility

function is not an exactly function, no one can know the exactly utility function value by using the

information network, it is just an appropriate value. Third, based on the reinforcement learning

[43], the users in the information networks system will also obey the BRUE principle. Because

there should take some time or steps to get to the optimal condition. And before it gets the optimal

condition, the topology already changed. So it is actually But in the information networks system,

there does not have long enough time to let the equilibrium occurs before the next post come

out. Compare to the game theory model, BRUE model should be used for the users' behavior

in the information networks system. Some recent research tells us that bounded rationality of
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individual users will in�uence the information network. Kasthurirathna and Piraveenan [45] made

the simulation for a number of strategic games. Then they regenerated the network so that the

network on average converged towards Nash equilibrium, despite the bounded rationality of nodes.

The link between bounded rationality distributions and social structure is important in explaining

social phenomena.

We generate a three-level mathematical optimization model. The �rst level is to optimize the infor-

mation post plan of information provider in order to maximize its connections. The second level

is to optimize the human behaviours of other users under BRUE. It has two formats. In optimistic

condition, we maximize human behaviours for the connections of information provider. But in

pessimistic condition, we minimize these variables. The reason we have two conditions is be-

cause, as we discussed before, by introducing BRUE, users' behaviours will drop in an uncertainty

set. We have interesting in how best and how worst this uncertainty will in�uence the information

provider's network connections. That is the reason we study the optimistic and pessimistic condi-

tions for BRUE. The third level is to calculate the maximum information utility for one user can

get, which need to be used in second level for BRUE constraints.

We solve a small-scale synthetic network by exact algorithms. But for large-scale network, the

calculation time is increasing exponentially. We tackle this problem by using large neighbourhood

search (LNS) algorithms. It is a heuristic algorithms [50] used to solve large-scale problem. It

is an effect way to �nd a good solution quickly when the time to �nd the global optimal solution

is too long. The main idea of this method is to block the local optimal solution and then �nd its

neighbourhood to get a new solution. Even though sometimes the second solution is not as better

as the �rst one. But by using such ways, sometimes the new solution can get rid of one local

optimal solution. Then we can �nd another local optimal solution that is better than the �rst local

solution we �nd.
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Math Model Formulation

We propose the following model to information network system. Our objective is to maximize

our information provider's connections by controlling its information post plan. With different

post plan, �rstly, the information cascading process will be different. Secondly After information

cascades, some users may have a choice to connect to a new followee or disconnect to an exit-

ing followee. Different information post plan of our information provider will lead to different

number of its followees. We use the linear threshold principle to determine users' information

post behavior. And use BRUE for users to simulation the network reconstruction after information

cascading.

Linear Threshold Model for Information Cascading

We use the linear threshold propagation model to determine whether or not one user decides to re-

post the information when this user receive it several times. When the summation of the in�uence

of one user's followers who post the information exceeds this users threshold, it will choose to

re-post this information. We will give the detail of the linear threshold constraint inside the model

CPi later. Figure 4.1 gives one example of the procedure for information cascading process and the

�nal connection of the network after the information cascades.

Figure 4.1(a) is the initial network of follower's linking network, the link and arrow between node

3 and node 5 means user 3 follows user 5. Some links between two users have two arrows mean

these two users follow with each other. In this example our information provider is node 10 in

black. And we just simulate for the cascading of one kind of information. Figure 4.1(b) is the �rst

step cascading, by principle of linear threshold the in�uence of node 10 is greater than the threshold

of node 5 and node 11. Then after node 10 post this information, node 5 and node 11 re-post it. We
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(a) Initial Graph (b) First Step Cascading (c) Second Step Cascading

(d) Third Step Cascading (e) New Followers (f) New Unfollowers

Figure 4.1: Cascading for the information and the �nal connection network

mark the re-post node in red color. Figure 4.1(c) is the second step of cascading, we can �nd that

now node 3 and node 8 also re-post this information. Even though node 3 already follow node 10

directly in the initial network, but the in�uence of node 10 does not beat the threshold of node 3. At

that time the in�uence of 10 to 3 is less than the threshold of node 3. After the �rst step node 5 also

re-post this information and node 3 can receive this information from both node 5 and node 10.

And currently the summation of the in�uence of node 5 and node 10 is over the threshold of node

3, so node 3 re-post this information in the second step. Figure 4.1(d) is the third step of cascading,

the similar reason for node 9 and node 7 to re-post the information. And after �gure 4.1(d), the

information cascading will stop. Because the node 1,2,4,6 will not re-post this information any

more. And the network become stable. Figure 4.1(e) adds two new followers to our target node

10 after the cascading based on our BRUE model. Figure 4.1(f) shows that node 9 determine to

un-follow node 10 based on the BRUE model. So from the principle of linear threshold, if we

know the post plan of the information provider, we can know the information cascading route and

procedure. Our next step is to optimize for the action of connection for other users in the system,
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which will follow the BRUE constraints.

BRUE Model

BRUE is the math model's equilibrium constraints from the bounded rationality. We suppose one

user in the system have multiple choices, for choicei it has utilityU(i). With out loss of generality,

we can set the choicei� has the optimal utility value. Then BRUE tells us that for any choicei has

the following property will be deemed as the possible choice for this user.

U(i) � r � U(i� ): (4.1)

Wherer is called the bounded rationality coef�cient. And we must haver � 1 because of the

optimality of the choicei� . From this constraint, we can know that by introducing BRUE to our

math model, we will have an uncertainty feasible region for the users. And whenr = 1, it is

the perfect rationality user equilibrium (PRUE). And it is actually the nash equilibrium. Beacuse it

means the user can only accept the plan's utility to be the maximum utility, and it has no motivation

to move to another paln. Game theory nash equilibrium is a special condition of BRUE whenr = 1.

In this paper, after information cascades, users may change their connections. We assume the way

of users' choice to connect or disconnect will obey BRUE constraints, which is also the nature of

human beings.

Pessimistic Condition

The following model (CPi) works for our information provideri to maximize the connections by

determine their post plan. It is constructed under the pessimistic condition by introducing the
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BRUE constraints. pessimistic condition means under BRUE constraint the behaviour of the other

users in the system act in the worst case for our information provider. The other users' choice

to connect or dis-connect will lead to the minimization the number of the information provider's

connections.The �rst level is to �nd the best choice for the information provider to maximize the

possible worst case. In this model it also has the third level, it is to maximize for the information

utility of each user in the system except the information provider. This information utility need to

be used in BRUE constraint. But this value also depends on the variables in the �rst level.

(CPi):

max
pil

min
xki

BP(xki) = å
k2N;k6= i

dkixki (4.2a)

s.t.Uk = å
l

Ukl; 8k 2 N; (4.2b)

Ukl = Fkl(zkl); 8k 2 N;8l 2 L (4.2c)

zkl = å
j2N; j6= k

xk j � p jl ; 8k 2 N;8l 2 L (4.2d)

p jl = G(pil ); 8 j 2 N; j 6= i;8l 2 L (4.2e)

xki � å
l

å
k02N;k06= i;k06= k

pk0l � xk0k + x̂ki; 8k 2 N;k 6= i;8l 2 L (4.2f)

xi j 2 f 0;1g; 8i; j 2 N; i 6= j (4.2g)

Uk � U �
k � r k; 8k 2 N;k 6= i (4.2h)

U �
k = max

x0
k j

U
0

k; 8k 2 N;k 6= i (4.2i)

s:t: (4:2b
0
) � (4:2g

0
) (4.2j)

In modelCPi , the objective function is the total connection bene�t the information provideri can
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get from the network.

The �rst level's decision variablepil is a binary variable to indicate whether the information

provider i will post informationl to the system, this kind of variable can be controlled by the

information provider.

In the second level,xi j is a binary variable, when it is equal to 1, it means useri follows userj in

the network. else,xi j = 0. Constraint (4.2b) gives the total information utility can get for userk

equals the summation of the utility from each information in the system. We denote the function

asFkl(�). Where

Fkl =

8
><

>:

vkl � (zkl � 1) � bkl; 8zkl � 1

0; zkl = 0

Two examples for the utility from the information respect to the number of times of one user to

receive that information is showed in �gure 4.2. Figure 4.2(a) has the parameterbkl > 0 and �gure

4.2(b) hasbkl < 0. Actually This function can be linearized, it is given later in (LN).

The relation of the variablep jl and variablepil is restricted by linear threshold principle, we denote

their relation in functionG(�). This function can not simply write out in formula. We just show the

mechanism to determinep jl from pil in algorithm 8 ALG-LT, whereTkl is the information re-post

threshold for userk with informationl . We can notice that if we get the value ofpil , we can directly

get the value ofp jl by linear threshold principle.

Constraint (4.2d) gives that for userk, the frequency of informationl it gets equals to the number

of its followee who re-post informationl . It will be a mixed linear constraint by givenpil .

Constraint (4.2f) shows that userk can not have the choice to follow the information provideri

if it does not follow useri originally and there has no followee of userk repost any information

generated by information provideri. x̂ki is the originally connection from userk to useri.
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Constraint (4.2h) is the BRUE constraint. It gives out that userk can accept any follow-unfollow

plan for which information utility drop within the BRUE gaps. Wherer k is the BRUE coef�cient

for userk. Constraint (4.2i) is the third level problem. It calculates the maximum information util-

ity that userk can get in the system. The constraints of the third level has the same formula compare

to the constraint (4.2b)-(4.2g) in the second level. But they did not share the same variablex jk and

Uk. We should replace all of the relative variablex jk in the second level with new variablex
0

jk and

U
0

k in third level. This is the reason we write the constraints in third level as(4:2b
0
) � (4:2g

0
) .

(a) Decreasing utility function (b) Increasing utility function

Figure 4.2: Relation of Information Utility to Times User Receive this information

In addition, we propose another information utility function of all usersk 2 N for informationl .

It shows in �gure 4.2(b). It means when a user receive the same information multiple, it's utility

is increasing. In this case, we consider that if one user receive the information from other user's

re-post, it means the other user likes this information. Then this information can have commonality

among the user's friend circle. Then the initial value of the information will be larger if this user

receive the information more times. For example, if one user has a lot of friends who re-post one

information of the result of super bowl, then this user should feel this information will have more

utility value to him/her. Because if he/she get this information, it is more easy to chat about it
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