You are here

Analysis of the operation and plasma dynamics of extreme-ultraviolet and soft x-ray lasers

Download pdf | Full Screen View

Date Issued:
1998
Abstract/Description:
University of Central Florida College of Arts and Sciences Thesis; Extending lasing action into the extreme ultraviolet and soft x-ray regions of the electromagnetic spectrum has been a natural progression in the continuing development of short wavelength radiation sources. However fundamental difficulties with the media used to produce short wavelength lasers has in general hindered the widespread development and use of such lasers in applications. Up to now all EUV and soft x-ray lasers have operated with plasmas as the gain medium to support lasing. This is a general requirement imposed by 1) the characteristics of short wavelength radiation as it originates from highly energetic atomic transitions and 2) the fundamental aspects of lasing at these wavelengths. Thus the plasma environment has been the defining characteristic in achieving lasing in the EUV and soft x-ray spectral regions. This thesis presents investigations into two types of EUV/Soft x-ray lasers that describe the operation and associated plasma dynamics of these devices. The first is a numerical investigation into a recombination pumped x-ray laser at 13.5 nm operating in a Li plasma. Using a collisional-radiative model of the atomic system, simulations were performed to determine the plasma conditions necessary to produce gain that were observed in reported experiments. The second investigation is the experimental development and operation of a capillary discharge driven laser operating at 46.9 nm in Ar. This device is a new generation of EUV/Soft X-ray laser based on a small scale driver system. The first interferometric probing experiments of this device will be discussed and related to the plasma dynamics of the capillary discharge.
Title: Analysis of the operation and plasma dynamics of extreme-ultraviolet and soft x-ray lasers.
39 views
14 downloads
Name(s): Bender, Howard A., Author
Silfvast, William T., Committee Chair
Arts and Sciences, Degree Grantor
Type of Resource: text
Date Issued: 1998
Publisher: University of Central Florida
Language(s): English
Abstract/Description: University of Central Florida College of Arts and Sciences Thesis; Extending lasing action into the extreme ultraviolet and soft x-ray regions of the electromagnetic spectrum has been a natural progression in the continuing development of short wavelength radiation sources. However fundamental difficulties with the media used to produce short wavelength lasers has in general hindered the widespread development and use of such lasers in applications. Up to now all EUV and soft x-ray lasers have operated with plasmas as the gain medium to support lasing. This is a general requirement imposed by 1) the characteristics of short wavelength radiation as it originates from highly energetic atomic transitions and 2) the fundamental aspects of lasing at these wavelengths. Thus the plasma environment has been the defining characteristic in achieving lasing in the EUV and soft x-ray spectral regions. This thesis presents investigations into two types of EUV/Soft x-ray lasers that describe the operation and associated plasma dynamics of these devices. The first is a numerical investigation into a recombination pumped x-ray laser at 13.5 nm operating in a Li plasma. Using a collisional-radiative model of the atomic system, simulations were performed to determine the plasma conditions necessary to produce gain that were observed in reported experiments. The second investigation is the experimental development and operation of a capillary discharge driven laser operating at 46.9 nm in Ar. This device is a new generation of EUV/Soft X-ray laser based on a small scale driver system. The first interferometric probing experiments of this device will be discussed and related to the plasma dynamics of the capillary discharge.
Identifier: CFR0011593 (IID), ucf:53045 (fedora)
Note(s): 1998-12-01
Ph.D.
Physics
Masters
This record was generated from author submitted information.
Electronically reproduced by the University of Central Florida from a book held in the John C. Hitt Library at the University of Central Florida, Orlando.
Subject(s): Arts and Sciences -- Dissertations
Academic
Dissertations
Academic -- Arts and Sciences
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFR0011593
Restrictions on Access: public
Host Institution: UCF

In Collections