DIGITAL IMAGE PROCESSING USING NTEC FACILITIES

BY

JAMES FREDERICK ROESCH, JR. B.S.E., University of Central Florida, 1982

RESEARCH REPORT

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Graduate Studies Program of the College of Engineering University of Central Florida Orlando, Florida

> Summer Term 1984

ABSTRACT

Digital image enhancement refers to the improvement of a given image for human interpretation. Digital image processing facilities are those in which hardware and software computing elements are combined in such a way as to enable the processing of digital images. This report describes the use of the Naval Training Equipment Center (NTEC) Computer Systems Laboratory computing facilities to enhance digital images. Described are two major hardware systems, the IKONAS RDS-3000 raster display graphics system and the VAX-11/780, and the digital image processing program (DIMPRP) written by the author. Digital image enhancement theory and practice are addressed through a discussion of the DIMPRP software. Finally, enhancements to the NTEC digital image processing facility such as improvements in hardware reliability, documentation, and increased speed of program execution are discussed.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to the Naval Training Equipment Center (NTEC) Computer Systems Laboratory for the use of their equipment. The author also wishes to express his gratitude to John L. Booker and Code N-74 for funding this research endeavor under Navy contract N61339-80-D-0014.

Special thanks go to Dr. Fred O. Simons who has been a great professor, advisor, and principal investigator under the Navy contract. He has provided encouragement and has been a good friend. Dr. Madjid Belkerdid has also been more than a professor and committee member; he has been a good friend as well.

The author would like to thank Mercedes Wechsler Jones for her assistance in preparing this report. Mercedes was kind enough to use her expertise on the Applicon CAD/CAM and the Apple Lisa personal computer systems to prepare all the drawn figures that appear in this report. Mark Layton has made many helpful suggestions, along the course of the writing of this report, which have been appreciated by the author.

The author would especially like to thank his wife, Helene, for her editorial assistance and her continual love throughout graduate school.

iii

TABLE OF CONTENTS

LIST	OF FIGURES	vi
Chapt	er	
1.	INTRODUCTION	1
	Digital Images	1
	Digital Image Processing	2
	Digital Image Processing Facilities	4
2.	A DIGITAL IMAGE PROCESSING FACILITY	8
	Hardware	8
	The IKONAS RDS-3000 Raster Diplay Graphics System	8
	IKONAS RDS-3000 VI8 Video Input Module	10
	IKONAS RDS-3000 DR64 Image Memory	11
	IKONAS RDS-3000 LUVO Module	12
	VAX/IK Interface	14
	The VAX-11/780 Minicomputer	14
	VAX Virtual Memory Architecture	15
	Mass Memory Storage Devices	18
	Software	19
	VAX/VMS Operating System	19
	FORTRAN Subroutines IKPRD, IKPWR, IKBWR	20
	Introduction to DIMPRP	22
3.	A GENERAL DIGITAL IMAGE PROCESSING PROGRAM	23
	The DIMPRP Menu	23
	Obtaining an Image	26
	Displaying an Image	28
	Image Enhancement	29
	The Image Histogram	30
	Image Enhancement by Histogram Modification	32
	Image Smoothing	37
	Edge Enhancement	41
	Tmage Sharpening	44
	Grav Level Reduction	47
	Grav Scale Inversion	49
	Thresholding	51
	Pseudocolor Enhancement	52
	Program Usage	54

4.	CONCLUSION	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
	NTEC Fac	cilit	y I	Enh	nar	nce	eme	ent	t																57
	Hard	vare																							57
	Softw	vare		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
APPEN	DIX: DIMPRP	Sour	ce	Li	ist	ir	ng	•	•	•		•						•	•	•		•		•	60
LIST	OF REFERENCI	ES .																							77

LIST OF FIGURES

1.	Elements of a Digital Image Processing System 5	
2.	Digital Image Processing Facility Architecture 9	
3.	VAX-11/780 Hardware Architecture	
4.	Author Executing the DIMPRP Software 24	
5.	The TEK 4014-1 Graphics Terminal 25	
6.	The IKONAS Hardware	
7.	Image Histograms	
8a.	Original Image	
8b.	Enhanced Image	
9a.	Original Image Histogram	
9b.	Enhanced Image Histogram	
10a.	Original Image	
10b.	Mean Filtered Image	
lla.	Original Image	
llb.	Median Filtered Image	
12a.	Original Image	
12b.	Edge Enhanced Image using Implmtl	
12c.	Edge Enhanced Image using Implmt2	
12d.	Edge Enhanced Image using Implmt3	
13a.	Original Image 48	
13b.	Sharpened Image	

14a.	Original Image with 256 Gray Levels	•	•	• •	50
14b.	Image with 32 Gray Levels				50
14c.	Image with 4 Gray Levels				50
15a.	Original Image				55
15b.	Pseudocolor Enhanced Image				55

CHAPTER 1

INTRODUCTION

Digital Images

Throughout this report, the term monochrome image or simply image, refers to a two-dimensional light intensity function i(x,y), where x and y denote spatial coordinates and the value of i at any point (x,y) is proportional to the brightness (or gray level intensity) of the image at that point. It is sometimes useful to view an image function in perspective with the third axis being brightness. An image viewed in this way appears as a series of active peaks in regions with numerous changes in brightness levels and smoother regions or plateaus where the brightness levels are constant or vary little. If assigning proportionally higher values to brighter areas, the height of the components in the plot would be proportional to the corresponding brightness in the image.

A digital image is an image i(x,y) which has been discretized and quantized in both spatial coordinates and in brightness. A digital image may be considered as a matrix whose row and column indices identify a point in the image and the corresponding matrix element value identifies the gray level at that point. The members of such an array are called "image elements", "picture elements", or "pixels", where pixels is the commonly used abbreviation of "picture elements".

