You are here

NETWORK INTRUSION DETECTION: MONITORING, SIMULATION ANDVISUALIZATION

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
This dissertation presents our work on network intrusion detection and intrusion sim- ulation. The work in intrusion detection consists of two different network anomaly-based approaches. The work in intrusion simulation introduces a model using explicit traffic gen- eration for the packet level traffic simulation. The process of anomaly detection is to first build profiles for the normal network activity and then mark any events or activities that deviate from the normal profiles as suspicious. Based on the different schemes of creating the normal activity profiles, we introduce two approaches for intrusion detection. The first one is a frequency-based approach which creates a normal frequency profile based on the periodical patterns existed in the time-series formed by the traffic. It aims at those attacks that are conducted by running pre-written scripts, which automate the process of attempting connections to various ports or sending packets with fabricated payloads, etc. The second approach builds the normal profile based on variations of connection-based behavior of each single computer. The deviations resulted from each individual computer are carried out by a weight assignment scheme and further used to build a weighted link graph representing the overall traffic abnormalities. The functionality of this system is of a distributed personal IDS system that also provides a centralized traffic analysis by graphical visualization. It provides a finer control over the internal network by focusing on connection-based behavior of each single computer. For network intrusion simulation, we explore an alternative method for network traffic simulation using explicit traffic generation. In particular, we build a model to replay the standard DARPA traffic data or the traffic data captured from a real environment. The replayed traffic data is mixed with the attacks, such as DOS and Probe attack, which can create apparent abnormal traffic flow patterns. With the explicit traffic generation, every packet that has ever been sent by the victim and attacker is formed in the simulation model and travels around strictly following the criteria of time and path that extracted from the real scenario. Thus, the model provides a promising aid in the study of intrusion detection techniques.
Title: NETWORK INTRUSION DETECTION: MONITORING, SIMULATION ANDVISUALIZATION.
22 views
12 downloads
Name(s): Zhou, Mian, Author
Lang, Sheau-Dong, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation presents our work on network intrusion detection and intrusion sim- ulation. The work in intrusion detection consists of two different network anomaly-based approaches. The work in intrusion simulation introduces a model using explicit traffic gen- eration for the packet level traffic simulation. The process of anomaly detection is to first build profiles for the normal network activity and then mark any events or activities that deviate from the normal profiles as suspicious. Based on the different schemes of creating the normal activity profiles, we introduce two approaches for intrusion detection. The first one is a frequency-based approach which creates a normal frequency profile based on the periodical patterns existed in the time-series formed by the traffic. It aims at those attacks that are conducted by running pre-written scripts, which automate the process of attempting connections to various ports or sending packets with fabricated payloads, etc. The second approach builds the normal profile based on variations of connection-based behavior of each single computer. The deviations resulted from each individual computer are carried out by a weight assignment scheme and further used to build a weighted link graph representing the overall traffic abnormalities. The functionality of this system is of a distributed personal IDS system that also provides a centralized traffic analysis by graphical visualization. It provides a finer control over the internal network by focusing on connection-based behavior of each single computer. For network intrusion simulation, we explore an alternative method for network traffic simulation using explicit traffic generation. In particular, we build a model to replay the standard DARPA traffic data or the traffic data captured from a real environment. The replayed traffic data is mixed with the attacks, such as DOS and Probe attack, which can create apparent abnormal traffic flow patterns. With the explicit traffic generation, every packet that has ever been sent by the victim and attacker is formed in the simulation model and travels around strictly following the criteria of time and path that extracted from the real scenario. Thus, the model provides a promising aid in the study of intrusion detection techniques.
Identifier: CFE0000679 (IID), ucf:46484 (fedora)
Note(s): 2005-08-01
Ph.D.
Engineering and Computer Science, School of Computer Science
Doctorate
This record was generated from author submitted information.
Subject(s): Network intrusion detection
intrusion simulation
anomaly
frequency
behavior-based
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000679
Restrictions on Access: public
Host Institution: UCF

In Collections