You are here

EFFECT OF OPERATOR CONTROL CONFIGURATION ON UNMANNED AERIAL SYSTEM TRAINABILITY

Download pdf | Full Screen View

Date Issued:
2006
Abstract/Description:
Unmanned aerial systems (UAS) carry no pilot on board, yet they still require live operators to handle critical functions such as mission planning and execution. Humans also interpret the sensor information provided by these platforms. This applies to all classes of unmanned aerial vehicles (UAV's), including the smaller portable systems used for gathering real-time reconnaissance during military operations in urban terrain. The need to quickly and reliably train soldiers to control small UAS operations demands that the human-system interface be intuitive and easy to master. In this study, participants completed a series of tests of spatial ability and were then trained (in simulation) to teleoperate a micro-unmanned aerial vehicle equipped with forward and downward fixed cameras. Three aspects of the human-system interface were manipulated to assess the effects on manual control mastery and target detection. One factor was the input device. Participants used either a mouse or a specially programmed game controller (similar to that used with the Sony™ Playstation 2 video game console). A second factor was the nature of the flight control displays as either continuous or discrete (analog v. digital). The third factor involved the presentation of sensor imagery. The display could either provide streaming video from one camera at a time, or present the imagery from both cameras simultaneously in separate windows. The primary dependent variables included: 1) time to complete assigned missions, 2) number of collisions, 3) number of targets detected, and 4) operator workload. In general, operator performance was better with the game controller than with the mouse, but significant improvement in time to complete occurred over repeated trials regardless of the device used. Time to complete missions was significantly faster with the game controller, and operators also detected more targets without any significant differences in workload compared to mouse users. Workload on repeated trials decreased with practice, and spatial ability was a significant covariate of workload. Lower spatial ability associated with higher workload scores. In addition, demographic data including computer usage and video gaming experience were collected and analyzed, and correlated with performance. Higher video gaming experience was also associated with lower workload.
Title: EFFECT OF OPERATOR CONTROL CONFIGURATION ON UNMANNED AERIAL SYSTEM TRAINABILITY.
40 views
20 downloads
Name(s): Neumann, John, Author
Kincaid, Peter, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2006
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Unmanned aerial systems (UAS) carry no pilot on board, yet they still require live operators to handle critical functions such as mission planning and execution. Humans also interpret the sensor information provided by these platforms. This applies to all classes of unmanned aerial vehicles (UAV's), including the smaller portable systems used for gathering real-time reconnaissance during military operations in urban terrain. The need to quickly and reliably train soldiers to control small UAS operations demands that the human-system interface be intuitive and easy to master. In this study, participants completed a series of tests of spatial ability and were then trained (in simulation) to teleoperate a micro-unmanned aerial vehicle equipped with forward and downward fixed cameras. Three aspects of the human-system interface were manipulated to assess the effects on manual control mastery and target detection. One factor was the input device. Participants used either a mouse or a specially programmed game controller (similar to that used with the Sony™ Playstation 2 video game console). A second factor was the nature of the flight control displays as either continuous or discrete (analog v. digital). The third factor involved the presentation of sensor imagery. The display could either provide streaming video from one camera at a time, or present the imagery from both cameras simultaneously in separate windows. The primary dependent variables included: 1) time to complete assigned missions, 2) number of collisions, 3) number of targets detected, and 4) operator workload. In general, operator performance was better with the game controller than with the mouse, but significant improvement in time to complete occurred over repeated trials regardless of the device used. Time to complete missions was significantly faster with the game controller, and operators also detected more targets without any significant differences in workload compared to mouse users. Workload on repeated trials decreased with practice, and spatial ability was a significant covariate of workload. Lower spatial ability associated with higher workload scores. In addition, demographic data including computer usage and video gaming experience were collected and analyzed, and correlated with performance. Higher video gaming experience was also associated with lower workload.
Identifier: CFE0001496 (IID), ucf:47080 (fedora)
Note(s): 2006-12-01
Ph.D.
Sciences, Other
Doctorate
This record was generated from author submitted information.
Subject(s): Human-computer interaction
training
simulation
control
interface
unmanned
systems
input devices
aerial vehicle
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0001496
Restrictions on Access: public
Host Institution: UCF

In Collections