You are here

EXPLORING CONFIDENCE INTERVALS IN THE CASE OF BINOMIAL AND HYPERGEOMETRIC DISTRIBUTIONS

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
The objective of this thesis is to examine one of the most fundamental and yet important methodologies used in statistical practice, interval estimation of the probability of success in a binomial distribution. The textbook confidence interval for this problem is known as the Wald interval as it comes from the Wald large sample test for the binomial case. It is generally acknowledged that the actual coverage probability of the standard interval is poor for values of p near 0 or 1. Moreover, recently it has been documented that the coverage properties of the standard interval can be inconsistent even if p is not near the boundaries. For this reason, one would like to study the variety of methods for construction of confidence intervals for unknown probability p in the binomial case. The present thesis accomplishes the task by presenting several methods for constructing confidence intervals for unknown binomial probability p. It is well known that the hypergeometric distribution is related to the binomial distribution. In particular, if the size of the population, N, is large and the number of items of interest k is such that k/N tends to p as N grows, then the hypergeometric distribution can be approximated by the binomial distribution. Therefore, in this case, one can use the confidence intervals constructed for p in the case of the binomial distribution as a basis for construction of the confidence intervals for the unknown value k = pN. The goal of this thesis is to study this approximation and to point out several confidence intervals which are designed specifically for the hypergeometric distribution. In particular, this thesis considers several confidence intervals which are based on estimation of a binomial proportion as well as Bayesian credible sets based on various priors.
Title: EXPLORING CONFIDENCE INTERVALS IN THE CASE OF BINOMIAL AND HYPERGEOMETRIC DISTRIBUTIONS.
83 views
19 downloads
Name(s): Mojica, Irene, Author
Pensky, Marianna, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The objective of this thesis is to examine one of the most fundamental and yet important methodologies used in statistical practice, interval estimation of the probability of success in a binomial distribution. The textbook confidence interval for this problem is known as the Wald interval as it comes from the Wald large sample test for the binomial case. It is generally acknowledged that the actual coverage probability of the standard interval is poor for values of p near 0 or 1. Moreover, recently it has been documented that the coverage properties of the standard interval can be inconsistent even if p is not near the boundaries. For this reason, one would like to study the variety of methods for construction of confidence intervals for unknown probability p in the binomial case. The present thesis accomplishes the task by presenting several methods for constructing confidence intervals for unknown binomial probability p. It is well known that the hypergeometric distribution is related to the binomial distribution. In particular, if the size of the population, N, is large and the number of items of interest k is such that k/N tends to p as N grows, then the hypergeometric distribution can be approximated by the binomial distribution. Therefore, in this case, one can use the confidence intervals constructed for p in the case of the binomial distribution as a basis for construction of the confidence intervals for the unknown value k = pN. The goal of this thesis is to study this approximation and to point out several confidence intervals which are designed specifically for the hypergeometric distribution. In particular, this thesis considers several confidence intervals which are based on estimation of a binomial proportion as well as Bayesian credible sets based on various priors.
Identifier: CFE0003919 (IID), ucf:48740 (fedora)
Note(s): 2011-08-01
M.S.
Sciences, Department of Mathematics
Masters
This record was generated from author submitted information.
Subject(s): Confidence Interval
Binomial Distribution
Hypergeometric Distribution
Standard Interval
Bayesian Confidence Sets
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0003919
Restrictions on Access: campus 2014-07-01
Host Institution: UCF

In Collections