You are here

AN IMPROVED OCEAN VECTOR WINDS RETRIEVAL APPROACH USING C- AND KU-BAND SCATTEROMETER AND MULTI-FREQUENCY MICROWAVE RADIOMETER MEASUREMENTS

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
This dissertation will specifically address the issue of improving the quality of satellite scatterometer retrieved ocean surface vector winds (OVW), especially in the presence of strong rain associated with tropical cyclones. A novel active/passive OVW retrieval algorithm is developed that corrects Ku-band scatterometer measurements for rain effects and then uses them to retrieve accurate OVW. The rain correction procedure makes use of independent information available from collocated multi-frequency passive microwave observations provided by a companion sensor and also from simultaneous C-band scatterometer measurements. The synergy of these active and passive measurements enables improved correction for rain effects, which enhances the utility of Ku-band scatterometer measurements in extreme wind events. The OVW retrieval algorithm is based on the next generation instrument conceptual design for future US scatterometers, i.e. the Dual Frequency Scatterometer (DFS) developed by NASA's Jet Propulsion Laboratory. Under this dissertation research, an end-to-end computer simulation was developed to evaluate the performance of this active/passive technique for retrieving hurricane force winds in the presence of intense rain. High-resolution hurricane wind and precipitation fields were simulated for several scenes of Hurricane Isabel in 2003 using the Weather Research and Forecasting (WRF) Model. Using these numerical weather model environmental fields, active/passive measurements were simulated for instruments proposed for the Global Change Observation Mission- Water Cycle (GCOM-W2) satellite series planned by the Japanese Aerospace Exploration Agency. Further, the quality of the simulation was evaluated using actual hurricane measurements from the Advanced Microwave Scanning Radiometer and SeaWinds scatterometer onboard the Advanced Earth Observing Satellite-II (ADEOS-II). The analysis of these satellite data provided confidence in the capability of the simulation to generate realistic active/passive measurements at the top of the atmosphere. Results are very encouraging, and they show that the new algorithm can retrieve accurate ocean surface wind speeds in realistic hurricane conditions using the rain corrected Ku-band scatterometer measurements. They demonstrate the potential to improve wind measurements in extreme wind events for future wind scatterometry missions such as the proposed GCOM-W2.
Title: AN IMPROVED OCEAN VECTOR WINDS RETRIEVAL APPROACH USING C- AND KU-BAND SCATTEROMETER AND MULTI-FREQUENCY MICROWAVE RADIOMETER MEASUREMENTS.
37 views
19 downloads
Name(s): Alsweiss, Suleiman, Author
Jones, W. Linwood, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation will specifically address the issue of improving the quality of satellite scatterometer retrieved ocean surface vector winds (OVW), especially in the presence of strong rain associated with tropical cyclones. A novel active/passive OVW retrieval algorithm is developed that corrects Ku-band scatterometer measurements for rain effects and then uses them to retrieve accurate OVW. The rain correction procedure makes use of independent information available from collocated multi-frequency passive microwave observations provided by a companion sensor and also from simultaneous C-band scatterometer measurements. The synergy of these active and passive measurements enables improved correction for rain effects, which enhances the utility of Ku-band scatterometer measurements in extreme wind events. The OVW retrieval algorithm is based on the next generation instrument conceptual design for future US scatterometers, i.e. the Dual Frequency Scatterometer (DFS) developed by NASA's Jet Propulsion Laboratory. Under this dissertation research, an end-to-end computer simulation was developed to evaluate the performance of this active/passive technique for retrieving hurricane force winds in the presence of intense rain. High-resolution hurricane wind and precipitation fields were simulated for several scenes of Hurricane Isabel in 2003 using the Weather Research and Forecasting (WRF) Model. Using these numerical weather model environmental fields, active/passive measurements were simulated for instruments proposed for the Global Change Observation Mission- Water Cycle (GCOM-W2) satellite series planned by the Japanese Aerospace Exploration Agency. Further, the quality of the simulation was evaluated using actual hurricane measurements from the Advanced Microwave Scanning Radiometer and SeaWinds scatterometer onboard the Advanced Earth Observing Satellite-II (ADEOS-II). The analysis of these satellite data provided confidence in the capability of the simulation to generate realistic active/passive measurements at the top of the atmosphere. Results are very encouraging, and they show that the new algorithm can retrieve accurate ocean surface wind speeds in realistic hurricane conditions using the rain corrected Ku-band scatterometer measurements. They demonstrate the potential to improve wind measurements in extreme wind events for future wind scatterometry missions such as the proposed GCOM-W2.
Identifier: CFE0003757 (IID), ucf:48774 (fedora)
Note(s): 2011-05-01
Ph.D.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Masters
This record was generated from author submitted information.
Subject(s): Satellite Remote Sensing
OVW
C-band
Ku-band
AMSR
DFS
GCOM-W2
Hurricane
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0003757
Restrictions on Access: public
Host Institution: UCF

In Collections