You are here

Tandem Mass Spectrometric Analysis of Ammonium and Sodium Oligoperoxide Adducts with the Application of Two-Dimensional Correlation Spectroscopy and Computational Chemistry

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
Oligoperoxides, H[OO(CH3)2C]nOOH, are formed as side products in the synthesis of the primary high explosive triacetone triperoxide (TATP). Previous tandem mass spectrometry (MSn) experiments using a quadrupole ion trap reported that the open-chained oligoperoxide adducts of ammonium or sodium resulted in different product ions in the mass spectra. Dissociation mechanisms were previously proposed based on MSn experiments, where n(>)2; however, a dissociation pathway achieved by an MSn experiment, where n(>)2, may not necessarily be the same pathway achieved in an MS2 experiment. For this dissertation research, the collision induced dissociation pathways were investigated for the open-chained oligoperoxides in MS2 experiments utilizing a quadrupole ion trap. Tandem mass spectral experiments were performed for the open-chained oligoperoxides ranging from the trimer to the octamer (n=3-8), including both ammonium and sodium adducts. The dissociation pathways were proposed as a result of two-dimensional correlation spectroscopy applied to the mass spectral data, which was referred to as two-dimensional correlation mass spectrometry (2D-CMS). The 2D-CMS method was first validated by analysis of simple and more complex kinetic models followed by simple and more complex molecules. To further aid in the elucidation of the dissociation mechanisms, computational chemistry was performed for the optimization of stable precursor and product ion structures and calculations of their relative energies and adduct dissociation energies.
Title: Tandem Mass Spectrometric Analysis of Ammonium and Sodium Oligoperoxide Adducts with the Application of Two-Dimensional Correlation Spectroscopy and Computational Chemistry.
41 views
19 downloads
Name(s): Frisch, Jessica, Author
Sigman, Michael, Committee Chair
Fookes, Barry, Committee Member
Hampton, Michael, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Oligoperoxides, H[OO(CH3)2C]nOOH, are formed as side products in the synthesis of the primary high explosive triacetone triperoxide (TATP). Previous tandem mass spectrometry (MSn) experiments using a quadrupole ion trap reported that the open-chained oligoperoxide adducts of ammonium or sodium resulted in different product ions in the mass spectra. Dissociation mechanisms were previously proposed based on MSn experiments, where n(>)2; however, a dissociation pathway achieved by an MSn experiment, where n(>)2, may not necessarily be the same pathway achieved in an MS2 experiment. For this dissertation research, the collision induced dissociation pathways were investigated for the open-chained oligoperoxides in MS2 experiments utilizing a quadrupole ion trap. Tandem mass spectral experiments were performed for the open-chained oligoperoxides ranging from the trimer to the octamer (n=3-8), including both ammonium and sodium adducts. The dissociation pathways were proposed as a result of two-dimensional correlation spectroscopy applied to the mass spectral data, which was referred to as two-dimensional correlation mass spectrometry (2D-CMS). The 2D-CMS method was first validated by analysis of simple and more complex kinetic models followed by simple and more complex molecules. To further aid in the elucidation of the dissociation mechanisms, computational chemistry was performed for the optimization of stable precursor and product ion structures and calculations of their relative energies and adduct dissociation energies.
Identifier: CFE0004377 (IID), ucf:49371 (fedora)
Note(s): 2012-08-01
Ph.D.
Sciences, Chemistry
Doctoral
This record was generated from author submitted information.
Subject(s): Mass spectrometry -- Dissociation mechanism -- 2D-COS -- 2D-CMS -- Oligoperoxides -- TATP
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004377
Restrictions on Access: campus 2013-08-15
Host Institution: UCF

In Collections