You are here

Quantum Algorithms for: Quantum Phase Estimation, Approximation of the Tutte Polynomial and Black-box Structures

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
In this dissertation, we investigate three different problems in the field of Quantum computation. First, we discuss the quantum complexity of evaluating the Tutte polynomial of a planar graph. Furthermore, we devise a new quantum algorithm for approximating the phase of a unitary matrix. Finally, we provide quantum tools that can be utilized to extract the structure of black-box modules and algebras. While quantum phase estimation (QPE) is at the core of many quantum algorithms known to date, its physical implementation (algorithms based on quantum Fourier transform (QFT)) is highly constrained by the requirement of high-precision controlled phase shift operators, which remain difficult to realize. In the second part of this dissertation, we introduce an alternative approach to approximately implement QPE with arbitrary constant-precision controlled phase shift operators.The new quantum algorithm bridges the gap between QPE algorithms based on QFT and Kitaev's original approach. For approximating the eigenphase precise to the nth bit, Kitaev's original approach does not require any controlled phase shift operator. In contrast, QPE algorithms based on QFT or approximate QFT require controlled phase shift operators with precision of at least Pi/2n. The new approach fills the gap and requires only arbitrary constant-precision controlled phase shift operators. From a physical implementation viewpoint, the new algorithm outperforms Kitaev's approach.The other problem we investigate relates to approximating the Tutte polynomial. We show that the problem of approximately evaluating the Tutte polynomial of triangular graphs at the points (q,1/q) of the Tutte plane is BQP-complete for (most) roots of unity q. We also consider circular graphs and show that the problem of approximately evaluating the Tutte polynomial of these graphs at a point is DQC1-complete and at some points is in BQP.To show that these problems can be solved by a quantum computer, we rely on the relation of the Tutte polynomial of a planar G graph with the Jones and HOMFLY polynomial of the alternating link D(G) given by the medial graph of G. In the case of our graphs the corresponding links are equal to the plat and trace closures of braids. It is known how to evaluate the Jones and HOMFLY polynomial for closures of braids.To establish the hardness results, we use the property that the images of the generators of the braid group under the irreducible Jones-Wenzl representations of the Hecke algebra have finite order. We show that for each braid we can efficiently construct a braid such that the evaluation of the Jones and HOMFLY polynomials of their closures at a fixed root of unity leads to the same value and that the closures of the resulting braid are alternating links.The final part of the dissertation focuses on finding the structure of a black-box module or algebra. Suppose we are given black-box access to a finite module M or algebra over a finite ring R and a list of generators for M and R. We show how to find a linear basis and structure constants for M in quantum poly (log|M|) time. This generalizes a recent quantum algorithm of Arvind et al. which finds a basis representation for rings. We then show that our algorithm is a useful primitive allowing quantum computer to determine the structure of a finite associative algebra as a direct sum of simple algebras. Moreover, it solves a wide variety of problems regarding finite modules and rings. Although our quantum algorithm is based on Abelian Fourier transforms, it solves problems regarding the multiplicative structure of modules and algebras, which need not be commutative. Examples include finding the intersection and quotient of two modules, finding the additive and multiplicative identities in a module, computing the order of an module, solving linear equations over modules, deciding whether an ideal is maximal, finding annihilators, and testing the injectivity and surjectivity of ring homomorphisms. These problems appear to be exponentially hard classically.
Title: Quantum Algorithms for: Quantum Phase Estimation, Approximation of the Tutte Polynomial and Black-box Structures.
23 views
12 downloads
Name(s): Ahmadi Abhari, Seyed Hamed, Author
Brennan, Joseph, Committee Chair
Mucciolo, Eduardo, Committee CoChair
Li, Xin, Committee Member
Marinescu, Dan, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this dissertation, we investigate three different problems in the field of Quantum computation. First, we discuss the quantum complexity of evaluating the Tutte polynomial of a planar graph. Furthermore, we devise a new quantum algorithm for approximating the phase of a unitary matrix. Finally, we provide quantum tools that can be utilized to extract the structure of black-box modules and algebras. While quantum phase estimation (QPE) is at the core of many quantum algorithms known to date, its physical implementation (algorithms based on quantum Fourier transform (QFT)) is highly constrained by the requirement of high-precision controlled phase shift operators, which remain difficult to realize. In the second part of this dissertation, we introduce an alternative approach to approximately implement QPE with arbitrary constant-precision controlled phase shift operators.The new quantum algorithm bridges the gap between QPE algorithms based on QFT and Kitaev's original approach. For approximating the eigenphase precise to the nth bit, Kitaev's original approach does not require any controlled phase shift operator. In contrast, QPE algorithms based on QFT or approximate QFT require controlled phase shift operators with precision of at least Pi/2n. The new approach fills the gap and requires only arbitrary constant-precision controlled phase shift operators. From a physical implementation viewpoint, the new algorithm outperforms Kitaev's approach.The other problem we investigate relates to approximating the Tutte polynomial. We show that the problem of approximately evaluating the Tutte polynomial of triangular graphs at the points (q,1/q) of the Tutte plane is BQP-complete for (most) roots of unity q. We also consider circular graphs and show that the problem of approximately evaluating the Tutte polynomial of these graphs at a point is DQC1-complete and at some points is in BQP.To show that these problems can be solved by a quantum computer, we rely on the relation of the Tutte polynomial of a planar G graph with the Jones and HOMFLY polynomial of the alternating link D(G) given by the medial graph of G. In the case of our graphs the corresponding links are equal to the plat and trace closures of braids. It is known how to evaluate the Jones and HOMFLY polynomial for closures of braids.To establish the hardness results, we use the property that the images of the generators of the braid group under the irreducible Jones-Wenzl representations of the Hecke algebra have finite order. We show that for each braid we can efficiently construct a braid such that the evaluation of the Jones and HOMFLY polynomials of their closures at a fixed root of unity leads to the same value and that the closures of the resulting braid are alternating links.The final part of the dissertation focuses on finding the structure of a black-box module or algebra. Suppose we are given black-box access to a finite module M or algebra over a finite ring R and a list of generators for M and R. We show how to find a linear basis and structure constants for M in quantum poly (log|M|) time. This generalizes a recent quantum algorithm of Arvind et al. which finds a basis representation for rings. We then show that our algorithm is a useful primitive allowing quantum computer to determine the structure of a finite associative algebra as a direct sum of simple algebras. Moreover, it solves a wide variety of problems regarding finite modules and rings. Although our quantum algorithm is based on Abelian Fourier transforms, it solves problems regarding the multiplicative structure of modules and algebras, which need not be commutative. Examples include finding the intersection and quotient of two modules, finding the additive and multiplicative identities in a module, computing the order of an module, solving linear equations over modules, deciding whether an ideal is maximal, finding annihilators, and testing the injectivity and surjectivity of ring homomorphisms. These problems appear to be exponentially hard classically.
Identifier: CFE0004239 (IID), ucf:49526 (fedora)
Note(s): 2012-05-01
Ph.D.
Sciences, Mathematics
Doctoral
This record was generated from author submitted information.
Subject(s): Quantum Computing -- Quantum Algorithms -- Tutte Polynomial -- Black-box -- Knot Theory -- Phase Estimation
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004239
Restrictions on Access: campus 2017-05-15
Host Institution: UCF

In Collections