You are here

Combustion Synthesis and Characterization of Porous NiTi Intermetallic For Structural Application

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
This thesis describes experimental investigation of thermal and combustion phenomena as well as structure for self- propagating combustion synthesis of porous Ni - Ti intermetallic aimed for structural biomedical application. The control parameters for the porosity distribution have been investigated experimentally through varying the preheat temperature, initial porosity, initial elemental particle size, and applied pressure during the fabrication process. Ni and Ti elemental powders are mixed using a 1:1 ratio. The mixture is compressed using several different compression forces to produce cylindrical samples of 1.1 cm diameter and 2-3cm length, with initial porosity ranging from 30% to 40%. The samples are preheated to various initial temperatures and ignited from the top surface such that the flame propagates axially downwards. The combustion reaction is recorded with a motion camera. An infrared sensor is used to record the temperature profile during the combustion process. The samples are then cut using a diamond saw in both longitudinal and transverse directions. Image analysis software is then used to analyze the porosity distribution in each sample.
Title: Combustion Synthesis and Characterization of Porous NiTi Intermetallic For Structural Application.
28 views
12 downloads
Name(s): Vanterpool, Jessica, Author
Ilegbusi, Olusegun, Committee Chair
Gou, Jihua, Committee Member
Nicholson, David, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This thesis describes experimental investigation of thermal and combustion phenomena as well as structure for self- propagating combustion synthesis of porous Ni - Ti intermetallic aimed for structural biomedical application. The control parameters for the porosity distribution have been investigated experimentally through varying the preheat temperature, initial porosity, initial elemental particle size, and applied pressure during the fabrication process. Ni and Ti elemental powders are mixed using a 1:1 ratio. The mixture is compressed using several different compression forces to produce cylindrical samples of 1.1 cm diameter and 2-3cm length, with initial porosity ranging from 30% to 40%. The samples are preheated to various initial temperatures and ignited from the top surface such that the flame propagates axially downwards. The combustion reaction is recorded with a motion camera. An infrared sensor is used to record the temperature profile during the combustion process. The samples are then cut using a diamond saw in both longitudinal and transverse directions. Image analysis software is then used to analyze the porosity distribution in each sample.
Identifier: CFE0004768 (IID), ucf:49803 (fedora)
Note(s): 2013-05-01
M.S.M.E.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): NiTi -- Combustion -- self- propagating combustion synthesis -- Porosity
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004768
Restrictions on Access: public 2013-05-15
Host Institution: UCF

In Collections