You are here

External cavity mode-locked semiconductor lasers for the generation of ultra-low noise multi-gigahertz frequency combs and applications in multi-heterodyne detection of arbitrary optical waveforms

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-P(&)#233;rot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of (<)2 fs and pulses compressible to (<)1 ps. Amplification of these pulse-trains with an external SCOWA lead to 390 mW of average optical power without evident degradation in phase noise and pulses that are compressible to the sub-picosecond regime. Finally, a new laser is built using a 10,000 Finesse Fabry-P(&)#233;rot Etalon held in a vacuum chamber. The fluctuations in the optical frequency of the individual comb-lines over time periods longer than 12 minutes are shown to be significantly reduced to (<)100 kHz in a measurement that is limited by the linewidth of the reference source.The use of these comb sources as local oscillators in multi-heterodyne detection of arbitrary optical waveforms is explored in three different cases. 1) Sampling of mode-locked pulses, 2) sampling of phase modulated continuous wave light and 3) periodically filtered white light. The last experiment achieves spectral interferometry with unprecedented resolution.
Title: External cavity mode-locked semiconductor lasers for the generation of ultra-low noise multi-gigahertz frequency combs and applications in multi-heterodyne detection of arbitrary optical waveforms.
29 views
12 downloads
Name(s): Davila-Rodriguez, Josue, Author
Delfyett, Peter, Committee Chair
Likamwa, Patrick, Committee Member
Li, Guifang, Committee Member
Malocha, Donald, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-P(&)#233;rot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of (<)2 fs and pulses compressible to (<)1 ps. Amplification of these pulse-trains with an external SCOWA lead to 390 mW of average optical power without evident degradation in phase noise and pulses that are compressible to the sub-picosecond regime. Finally, a new laser is built using a 10,000 Finesse Fabry-P(&)#233;rot Etalon held in a vacuum chamber. The fluctuations in the optical frequency of the individual comb-lines over time periods longer than 12 minutes are shown to be significantly reduced to (<)100 kHz in a measurement that is limited by the linewidth of the reference source.The use of these comb sources as local oscillators in multi-heterodyne detection of arbitrary optical waveforms is explored in three different cases. 1) Sampling of mode-locked pulses, 2) sampling of phase modulated continuous wave light and 3) periodically filtered white light. The last experiment achieves spectral interferometry with unprecedented resolution.
Identifier: CFE0004669 (IID), ucf:49863 (fedora)
Note(s): 2013-05-01
Ph.D.
Optics and Photonics, Optics and Photonics
Doctoral
This record was generated from author submitted information.
Subject(s): lasers -- mode-locked lasers -- frequency combs -- optical metrology
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004669
Restrictions on Access: public 2013-05-15
Host Institution: UCF

In Collections