You are here

Microwave Radiometer (MWR) Evaluation of Multi-Beam Satellite Antenna Boresight Pointing Using Land-Water Crossings, for the Aquarius/SAC-D Mission

Download pdf | Full Screen View

Date Issued:
2015
Abstract/Description:
This research concerns the CONAE Microwave Radiometer (MWR), on board the Aquarius/SAC-D platform. MWR's main purpose is to provide measurements that are simultaneous and spatially collocated with those of NASA's Aquarius radiometer/scatterometer. For this reason, knowledge of the MWR antenna beam footprint geolocation is crucial to mission success.In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, using calculated MWR instantaneous field of view (IFOV) centers, provided in the CONAE L-1B science data product. This procedure compares L-1B MWR IFOV centers at land/water crossings against high-resolution coastline maps. MWR IFOV locations versus time are computed from knowledge of the satellite's instantaneous location relative to an earth-centric coordinate system (provided by on-board GPS receivers), and a priori measurements of antenna gain patterns and mounting geometry.Previous conical scanning microwave radiometer missions (e.g., SSM/I) have utilized observation of rapid change in brightness temperatures (T_B) to estimate the location of land/water boundaries, and subsequently to determine the antenna beam-pointing accuracy. In this thesis, results of an algorithm to quantify the geolocation error of MWR beam center are presented, based upon two-dimensional convolution between each beam's gain pattern and land-water transition. The analysis procedures have been applied to on-orbit datasets that represent land-water boundaries bearing specific desirable criteria, which are also detailed herein. The goal of this research is to gain a better understanding of satellite radiometer beam-pointing error and thereby to improve the geolocation accuracy for MWR science data products.
Title: Microwave Radiometer (MWR) Evaluation of Multi-Beam Satellite Antenna Boresight Pointing Using Land-Water Crossings, for the Aquarius/SAC-D Mission.
28 views
12 downloads
Name(s): Clymer, Bradley, Author
Jones, W Linwood, Committee Chair
Mikhael, Wasfy, Committee Member
Flitsiyan, Elena, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2015
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This research concerns the CONAE Microwave Radiometer (MWR), on board the Aquarius/SAC-D platform. MWR's main purpose is to provide measurements that are simultaneous and spatially collocated with those of NASA's Aquarius radiometer/scatterometer. For this reason, knowledge of the MWR antenna beam footprint geolocation is crucial to mission success.In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, using calculated MWR instantaneous field of view (IFOV) centers, provided in the CONAE L-1B science data product. This procedure compares L-1B MWR IFOV centers at land/water crossings against high-resolution coastline maps. MWR IFOV locations versus time are computed from knowledge of the satellite's instantaneous location relative to an earth-centric coordinate system (provided by on-board GPS receivers), and a priori measurements of antenna gain patterns and mounting geometry.Previous conical scanning microwave radiometer missions (e.g., SSM/I) have utilized observation of rapid change in brightness temperatures (T_B) to estimate the location of land/water boundaries, and subsequently to determine the antenna beam-pointing accuracy. In this thesis, results of an algorithm to quantify the geolocation error of MWR beam center are presented, based upon two-dimensional convolution between each beam's gain pattern and land-water transition. The analysis procedures have been applied to on-orbit datasets that represent land-water boundaries bearing specific desirable criteria, which are also detailed herein. The goal of this research is to gain a better understanding of satellite radiometer beam-pointing error and thereby to improve the geolocation accuracy for MWR science data products.
Identifier: CFE0005591 (IID), ucf:50269 (fedora)
Note(s): 2015-05-01
M.S.E.E.
Engineering and Computer Science, Electrical Engr and Comp Sci
Masters
This record was generated from author submitted information.
Subject(s): Microwave Radiometry -- Passive Microwave Remote Sensing -- Calibration -- Geolocation
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005591
Restrictions on Access: public 2015-05-15
Host Institution: UCF

In Collections