You are here

Synthesis of Fluorescent Molecules and their Applications as Viscosity Sensors, Metal Ion Indicators, and Near-Infrared Probes

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
The primary focus of this dissertation is the development of novel fluorescent near-infrared molecules for various applications. In Chapter 1, a compound dU-BZ synthesized via Sonogashira coupling reaction methodology is described. A deoxyuridine building block was introduced to enhance hydrophilic properties and reduce toxicity, while an alkynylated benzothiazolium dye was incorporated for near-IR emission and reduce photodamage and phototoxicity that is characteristic of common fluorphores that are excited by UV or visible light. A 30-fold enhancement of fluorescence intensity of dU-BZ was achieved in a viscous environment. Values of fluorescence quantum yields in 99% glycerol/1% methanol (v/v) of varying temperature from 293 K to 343 K, together with fluorescence quantum yields, radiative and nonradiative rate constants and fluorescence lifetimes in glycerol/methanol solutions of varying viscosities from 4.8 to 950 cP were determined. It was found that both fluorescence quantum yields and fluorescence lifetimes increased with increasing viscosity, which is consistent with results predicted by theory. This suggests that the newly designed compound dU-BZ is capable of functioning as a probe of local microviscosity, and was later confirmed by in vitro bioimaging experiments.In Chapter 2, a new BAPTA (O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetra acetic acid) and BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based calcium indicator, BAPBO-3, is reported. A new synthetic route was employed to simplify both synthesis and purification, which tend to be low yielding and cumbersome for BAPTA derivatives. Upon excitation, a 1.5-fold increase in fluorescence intensity in buffer containing 39 ?? Ca2+ and a 3-fold increase in fluorescence intensity in buffer containing 1 M Ca2+ was observed; modest but promising fluorescence turn-on enhancements.In Chapter 3, a newly-designed unsymmetrical squaraine dye, SQ3, was synthesized. A one-pot synthesis was employed resulting in a 10% yield, a result that is generally quite favorable for the creation of unsymmetrical squaraines Photophysical and photochemical characterization was conducted in various solvents, and a 678 nm absorption maximum and a 692 nm emission maximum were recorded in DMSO solution with a fluorescence quantum yield of 0.32. In vitro cell studies demonstrated that SQ3 can be used as a near-IR probe for bioimaging.
Title: Synthesis of Fluorescent Molecules and their Applications as Viscosity Sensors, Metal Ion Indicators, and Near-Infrared Probes.
38 views
20 downloads
Name(s): Wang, Mengyuan, Author
Belfield, Kevin, Committee Chair
Campiglia, Andres, Committee Member
Miles, Delbert, Committee Member
Frazer, Andrew, Committee Member
Cheng, Zixi, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The primary focus of this dissertation is the development of novel fluorescent near-infrared molecules for various applications. In Chapter 1, a compound dU-BZ synthesized via Sonogashira coupling reaction methodology is described. A deoxyuridine building block was introduced to enhance hydrophilic properties and reduce toxicity, while an alkynylated benzothiazolium dye was incorporated for near-IR emission and reduce photodamage and phototoxicity that is characteristic of common fluorphores that are excited by UV or visible light. A 30-fold enhancement of fluorescence intensity of dU-BZ was achieved in a viscous environment. Values of fluorescence quantum yields in 99% glycerol/1% methanol (v/v) of varying temperature from 293 K to 343 K, together with fluorescence quantum yields, radiative and nonradiative rate constants and fluorescence lifetimes in glycerol/methanol solutions of varying viscosities from 4.8 to 950 cP were determined. It was found that both fluorescence quantum yields and fluorescence lifetimes increased with increasing viscosity, which is consistent with results predicted by theory. This suggests that the newly designed compound dU-BZ is capable of functioning as a probe of local microviscosity, and was later confirmed by in vitro bioimaging experiments.In Chapter 2, a new BAPTA (O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetra acetic acid) and BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based calcium indicator, BAPBO-3, is reported. A new synthetic route was employed to simplify both synthesis and purification, which tend to be low yielding and cumbersome for BAPTA derivatives. Upon excitation, a 1.5-fold increase in fluorescence intensity in buffer containing 39 ?? Ca2+ and a 3-fold increase in fluorescence intensity in buffer containing 1 M Ca2+ was observed; modest but promising fluorescence turn-on enhancements.In Chapter 3, a newly-designed unsymmetrical squaraine dye, SQ3, was synthesized. A one-pot synthesis was employed resulting in a 10% yield, a result that is generally quite favorable for the creation of unsymmetrical squaraines Photophysical and photochemical characterization was conducted in various solvents, and a 678 nm absorption maximum and a 692 nm emission maximum were recorded in DMSO solution with a fluorescence quantum yield of 0.32. In vitro cell studies demonstrated that SQ3 can be used as a near-IR probe for bioimaging.
Identifier: CFE0005900 (IID), ucf:50863 (fedora)
Note(s): 2014-12-01
Ph.D.
Sciences, Chemistry
Doctoral
This record was generated from author submitted information.
Subject(s): viscosity sensor -- molecular rotor -- TICT mechanism -- calcium ions -- BAPTA -- BODIPY -- unsymmetrical squaraines -- near-IR -- bio-imaging
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005900
Restrictions on Access: campus 2016-06-15
Host Institution: UCF

In Collections