You are here

Water and energy costs of landfilled food waste

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
Energy and water are consumed or contaminated during both the production and disposal of wasted food. To date, evaluations of water and energy resources associated with food waste have considered only resources used in food production. To allow for the full characterization of food waste within a Food Energy Water (FEW) nexus framework, this study addresses a fundamental knowledge gap related to the energy and water impacts of food waste after disposal. Fluxes of water and energy related to disposal of wasted food in landfills within the state of Florida were characterized. It is estimated that each metric ton (Mg) of landfilled food waste produces 18.1 kWh of energy, while the energy needed for collection, leachate transport, and treatment totals 126.5 kWh/Mg. These values equate to a net energy cost of 108.4 kWh/Mg, which is 110 Million kWh annually in Florida. It was observed that the water footprint of landfilled food waste is related to the assimilation of contaminated effluent and ranges from 2.5 to 58.5 m3 per metric ton of landfilled food waste, depending on the constituent of interest. Up to 58 Million m3 of water may be required annually to assimilate contamination related to landfilled food waste in Florida. We assessed the sensitivity of 14 variables used to estimate energy and water impacts and found that impacts are sensitive to the proportion of landfills collecting and utilizing landfill gas, concentration of constituents in leachate, and volume of effluent. Future research should be focused to improving the characterization of these influential parameters, and to similar FEW analysis of other food waste management technologies, such as composting or anaerobic digestion. Better understanding of water and energy impacts of food waste could inform societal decision making regarding investment in FEW-efficient waste management technologies.
Title: Water and energy costs of landfilled food waste.
22 views
10 downloads
Name(s): Sarker, Tonmoy, Author
Kibler, Kelly, Committee Chair
Reinhart, Debra, Committee Member
Tatari, Omer, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Energy and water are consumed or contaminated during both the production and disposal of wasted food. To date, evaluations of water and energy resources associated with food waste have considered only resources used in food production. To allow for the full characterization of food waste within a Food Energy Water (FEW) nexus framework, this study addresses a fundamental knowledge gap related to the energy and water impacts of food waste after disposal. Fluxes of water and energy related to disposal of wasted food in landfills within the state of Florida were characterized. It is estimated that each metric ton (Mg) of landfilled food waste produces 18.1 kWh of energy, while the energy needed for collection, leachate transport, and treatment totals 126.5 kWh/Mg. These values equate to a net energy cost of 108.4 kWh/Mg, which is 110 Million kWh annually in Florida. It was observed that the water footprint of landfilled food waste is related to the assimilation of contaminated effluent and ranges from 2.5 to 58.5 m3 per metric ton of landfilled food waste, depending on the constituent of interest. Up to 58 Million m3 of water may be required annually to assimilate contamination related to landfilled food waste in Florida. We assessed the sensitivity of 14 variables used to estimate energy and water impacts and found that impacts are sensitive to the proportion of landfills collecting and utilizing landfill gas, concentration of constituents in leachate, and volume of effluent. Future research should be focused to improving the characterization of these influential parameters, and to similar FEW analysis of other food waste management technologies, such as composting or anaerobic digestion. Better understanding of water and energy impacts of food waste could inform societal decision making regarding investment in FEW-efficient waste management technologies.
Identifier: CFE0006654 (IID), ucf:51233 (fedora)
Note(s): 2017-05-01
M.S.C.E.
Engineering and Computer Science, Civil, Environmental and Construction Engineering
Masters
This record was generated from author submitted information.
Subject(s): food -- energy -- water -- nexus -- food waste -- water footprint -- landfill -- waste management
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006654
Restrictions on Access: public 2017-05-15
Host Institution: UCF

In Collections