You are here
A Universal Electrochemical Biosensor for the Detection of Nucleic Acids based on a Four-Way Junction Structure
- Date Issued:
- 2017
- Abstract/Description:
- Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode's surface. This dissertation demonstrates that a single probe can be used to analyze several nucleic acid targets of different lengths with high selectivity, low cost and can be regenerated in 30 seconds by a simple water rinse. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode's surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J structure. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The sensor was monitored with voltammetry and electrochemical impedance spectroscopy using different redox labeling strategies and optimized using synthetic nucleic acid sequences. After the sensor was optimized and fully characterized, it was modified for the detection of the Zika virus. The UE4J sensor presented here opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of potentially any DNA or RNA targets.
Title: | A Universal Electrochemical Biosensor for the Detection of Nucleic Acids based on a Four-Way Junction Structure. |
40 views
17 downloads |
---|---|---|
Name(s): |
Mills, Dawn, Author Chumbimuni Torres, Karin, Committee Chair Kolpashchikov, Dmitry, Committee CoChair Campiglia, Andres, Committee Member Dupras, Tosha, Committee Member Tetard, Laurene, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2017 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode's surface. This dissertation demonstrates that a single probe can be used to analyze several nucleic acid targets of different lengths with high selectivity, low cost and can be regenerated in 30 seconds by a simple water rinse. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode's surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J structure. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The sensor was monitored with voltammetry and electrochemical impedance spectroscopy using different redox labeling strategies and optimized using synthetic nucleic acid sequences. After the sensor was optimized and fully characterized, it was modified for the detection of the Zika virus. The UE4J sensor presented here opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of potentially any DNA or RNA targets. | |
Identifier: | CFE0007290 (IID), ucf:52146 (fedora) | |
Note(s): |
2017-12-01 Ph.D. Sciences, Chemistry Doctoral This record was generated from author submitted information. |
|
Subject(s): | electrochemical -- biosensor -- four-way junction -- Zika -- nucleic acids -- stem-loop probe -- voltammetry -- impedance | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007290 | |
Restrictions on Access: | public 2018-06-15 | |
Host Institution: | UCF |