You are here

Numerical Study of Interfacial flow using Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) Method

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Solving interfacial flows numerically has been a challenge due to the lack of sharpness and the presence of spurious currents at the interface. Two methods, Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method and Ghost Fluid Method (GFM) have been developed in the finite volume framework and employed in several interfacial flows such as Rayleigh-Taylor instability, rising bubble, impinging droplet and cross-flow oil plume. In the static droplet simulation, A-CLSVOF substantially reduces the spurious currents. The capillary wave relaxation shows that this method delivers results comparable to those of more rigorous methods such as Front Tracking methods for fine grids. The results for the other interfacial flows also compared well with the experimental results. Next, interfacial forces are implemented by enlisting the finite volume discretization of Ghost Fluid Method. To assess the A-CLSVOF/GFM performance, four cases are studied. In the case of the static droplet in suspension, the combined A-CLSVOF/GFM produces a sharp and accurate pressure jump compared to the traditional CSF (continuum surface force) implementation. For the linear two-layer shear flow, GFM sharp treatment of the viscosity captured the velocity gradient across the interface. For a gaseous bubble rising in a viscous fluid, GFM outperforms CSF by almost 10%. Also, a Decoupled Pressure A-CLSVOF/GFM method (DPM) has been developed which separates pressure into two pressure components, one accounting for interfacial forces such as surface tension and another representing the rest of flow pressure. It is proven that the DPM implementation results in more efficiency in PISO (Pressure Implicit with Splitting of Operators) loop. A two-phase solver is used to study buoyant oil discharge in quiescent and cross-flow ambient. Different modes of breakup including dripping, jetting (axisymmetric and asymmetric) and atomization for cross-flow oil jet are captured.
Title: Numerical Study of Interfacial flow using Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) Method.
35 views
16 downloads
Name(s): Haghshenas, Majid, Author
Kumar, Ranganathan, Committee Chair
Das, Tuhin, Committee Member
Ahmed, Kareem, Committee Member
Shivamoggi, Bhimsen, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2018
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Solving interfacial flows numerically has been a challenge due to the lack of sharpness and the presence of spurious currents at the interface. Two methods, Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method and Ghost Fluid Method (GFM) have been developed in the finite volume framework and employed in several interfacial flows such as Rayleigh-Taylor instability, rising bubble, impinging droplet and cross-flow oil plume. In the static droplet simulation, A-CLSVOF substantially reduces the spurious currents. The capillary wave relaxation shows that this method delivers results comparable to those of more rigorous methods such as Front Tracking methods for fine grids. The results for the other interfacial flows also compared well with the experimental results. Next, interfacial forces are implemented by enlisting the finite volume discretization of Ghost Fluid Method. To assess the A-CLSVOF/GFM performance, four cases are studied. In the case of the static droplet in suspension, the combined A-CLSVOF/GFM produces a sharp and accurate pressure jump compared to the traditional CSF (continuum surface force) implementation. For the linear two-layer shear flow, GFM sharp treatment of the viscosity captured the velocity gradient across the interface. For a gaseous bubble rising in a viscous fluid, GFM outperforms CSF by almost 10%. Also, a Decoupled Pressure A-CLSVOF/GFM method (DPM) has been developed which separates pressure into two pressure components, one accounting for interfacial forces such as surface tension and another representing the rest of flow pressure. It is proven that the DPM implementation results in more efficiency in PISO (Pressure Implicit with Splitting of Operators) loop. A two-phase solver is used to study buoyant oil discharge in quiescent and cross-flow ambient. Different modes of breakup including dripping, jetting (axisymmetric and asymmetric) and atomization for cross-flow oil jet are captured.
Identifier: CFE0007570 (IID), ucf:52582 (fedora)
Note(s): 2018-08-01
Ph.D.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Two-phase flow -- CLSVOF -- Ghost fluid method -- Cross-flow -- Oil jet -- interfacial flow
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0007570
Restrictions on Access: campus 2020-02-15
Host Institution: UCF

In Collections