You are here
Engineering Noble-metal Nanostructures for Biosensing Applications
- Date Issued:
- 2019
- Abstract/Description:
- The ability to engineer noble-metal nanostructures (NMNSs) in a controllable manner and to understand the structure-dependent properties greatly boost our knowledge in rational design of biosensing technologies. In particular, as a type of highly efficient peroxidase mimics, NMNSs hold promising potential to break through the bottleneck of conventional enzyme-based in vitro diagnostics.During the time of my Ph.D. study, I have successfully: 1) directed a two-step method involving seed-mediated growth and chemical etching for the synthesis of Ru nanoframes (RuNFs) with face-centered cubic crystal phase and enhanced catalytic activities; 2) demonstrated, for the first time, the inherent peroxidase-like activity of RuNFs as a type of efficient peroxidase mimics, opening up possibilities for their bioapplications; 3) developed an enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers by using Pd-Ir nanooctahedra encapsulated gold vesicles as labels; 4) prepared polyvinylpyrrolidone (PVP)-capped Pt nanocubes with superior peroxidase-like catalytic activity and record-high specific catalytic activity; 5) developed a facile colorimetric method for the detection of Ag(I) ions with picomolar sensitivity by using the PVP-capped Pt nanocubes as the probes; 6) developed a non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers by taking advantage of the interaction between the Ag(I) ions and PVP-capped Pt nanocubes; and 7) established a highly sensitive colorimetric lateral flow assay platform by using Au@Pt core-shell nanoparticles as the labels that possess both plasmonic and catalytic properties.
Title: | Engineering Noble-metal Nanostructures for Biosensing Applications. |
35 views
15 downloads |
---|---|---|
Name(s): |
Ye, Haihang, Author Xia, Xiaohu, Committee Chair Kuebler, Stephen, Committee Member Chen, Gang, Committee Member Beazley, Melanie, Committee Member Feng, Xiaofeng, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2019 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | The ability to engineer noble-metal nanostructures (NMNSs) in a controllable manner and to understand the structure-dependent properties greatly boost our knowledge in rational design of biosensing technologies. In particular, as a type of highly efficient peroxidase mimics, NMNSs hold promising potential to break through the bottleneck of conventional enzyme-based in vitro diagnostics.During the time of my Ph.D. study, I have successfully: 1) directed a two-step method involving seed-mediated growth and chemical etching for the synthesis of Ru nanoframes (RuNFs) with face-centered cubic crystal phase and enhanced catalytic activities; 2) demonstrated, for the first time, the inherent peroxidase-like activity of RuNFs as a type of efficient peroxidase mimics, opening up possibilities for their bioapplications; 3) developed an enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers by using Pd-Ir nanooctahedra encapsulated gold vesicles as labels; 4) prepared polyvinylpyrrolidone (PVP)-capped Pt nanocubes with superior peroxidase-like catalytic activity and record-high specific catalytic activity; 5) developed a facile colorimetric method for the detection of Ag(I) ions with picomolar sensitivity by using the PVP-capped Pt nanocubes as the probes; 6) developed a non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers by taking advantage of the interaction between the Ag(I) ions and PVP-capped Pt nanocubes; and 7) established a highly sensitive colorimetric lateral flow assay platform by using Au@Pt core-shell nanoparticles as the labels that possess both plasmonic and catalytic properties. | |
Identifier: | CFE0007559 (IID), ucf:52626 (fedora) | |
Note(s): |
2019-05-01 Ph.D. Sciences, Chemistry Doctoral This record was generated from author submitted information. |
|
Subject(s): | Noble metal ? nanostructures ? peroxidase mimics ? in vitro diagnostics ? biosensing technique ? colorimetric detection | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0007559 | |
Restrictions on Access: | public 2019-05-15 | |
Host Institution: | UCF |