Current Search: CATBAS, NECATI (x)
View All Items
Pages
- Title
- Load Estimation, Structural Identification and Human Comfort Assessment of Flexible Structures.
- Creator
-
Celik, Ozan, Catbas, Necati, Yun, Hae-Bum, Makris, Nicos, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
Stadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable...
Show moreStadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable load quantification, a deeper understanding of structural response, generation of simple and efficient human-structure interaction models and new measurement and assessment criteria for acceptable vibration levels. In contribution to these possible improvements, this dissertation taps into three specific areas: the load quantification of lively individuals or crowds, the structural identification under non-stationary and narrowband disturbances and the measurement of excessive vibration levels for human comfort. For load quantification, a computer vision based approach capable of tracking both individual and crowd motion is used. For structural identification, a noise-assisted Multivariate Empirical Mode Decomposition (MEMD) algorithm is incorporated into the operational modal analysis. The measurement of excessive vibration levels and the assessment of human comfort are accomplished through computer vision based human and object tracking, which provides a more convenient means for measurement and computation. All the proposed methods are tested in the laboratory environment utilizing a grandstand simulator and in the field on a pedestrian bridge and on a football stadium. Findings and interpretations from the experimental results are presented. The dissertation is concluded by highlighting the critical findings and the possible future work that may be conducted.
Show less - Date Issued
- 2017
- Identifier
- CFE0006863, ucf:51752
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006863
- Title
- Resource Allocation and Pricing in Secondary Dynamic Spectrum Access Networks.
- Creator
-
Khairullah, Enas, Chatterjee, Mainak, Zou, Changchun, Lang, Sheau-Dong, Catbas, Necati, University of Central Florida
- Abstract / Description
-
The paradigm shift from static spectrum allocation to a dynamic one has opened many challenges that need to be addressed for the true vision of Dynamic Spectrum Access (DSA) to materialize. This dissertation proposes novel solutions that include: spectrum allocation, routing, and scheduling in DSA networks. First, we propose an auction-based spectrum allocation scheme in a multi-channel environment where secondary users (SUs) bid to buy channels from primary users (PUs) based on the signal to...
Show moreThe paradigm shift from static spectrum allocation to a dynamic one has opened many challenges that need to be addressed for the true vision of Dynamic Spectrum Access (DSA) to materialize. This dissertation proposes novel solutions that include: spectrum allocation, routing, and scheduling in DSA networks. First, we propose an auction-based spectrum allocation scheme in a multi-channel environment where secondary users (SUs) bid to buy channels from primary users (PUs) based on the signal to interference and noise ratio (SINR). The channels are allocated such that i) the SUs get their preferred channels, ii) channels are re-used, and iii) there is no interference. Then, we propose a double auction-based spectrum allocation technique by considering multiple bids from SUs and heterogeneity of channels. We use virtual grouping of conflict-free buyers to transform multi-unit bids to single-unit bids. For routing, we propose a market-based model where the PUs determine the optimal price based on the demand for bandwidth by the SUs. Routes are determined through a series of price evaluations between message senders and forwarders. Also, we consider auction-based routing for two cases where buyers can bid for only one channel or they could bid for a combination of non-substitutable channels. For a centralized DSA, we propose two scheduling algorithms-- the first one focuses on maximizing the throughput and the second one focuses on fairness. We extend the scheduling algorithms to multi-channel environment. Expected throughput for every channel is computed by modelling channel state transitions using a discrete-time Markov chain. The state transition probabilities are calculated which occur at the frame/slot boundaries. All proposed algorithms are validated using simulation experiments with different network settings and their performance are studied.
Show less - Date Issued
- 2017
- Identifier
- CFE0006890, ucf:51723
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006890
- Title
- Investigation of infrared thermography for subsurface damage detection of concrete structures.
- Creator
-
Hiasa, Shuhei, Catbas, Necati, Tatari, Omer, Nam, Boo Hyun, Zaurin, Ricardo, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Deterioration of road infrastructure arises from aging and various other factors. Consequently, inspection and maintenance have been a serious worldwide problem. In the United States, degradation of concrete bridge decks is a widespread problem among several bridge components. In order to prevent the impending degradation of bridges, periodic inspection and proper maintenance are indispensable. However, the transportation system faces unprecedented challenges because the number of aging...
Show moreDeterioration of road infrastructure arises from aging and various other factors. Consequently, inspection and maintenance have been a serious worldwide problem. In the United States, degradation of concrete bridge decks is a widespread problem among several bridge components. In order to prevent the impending degradation of bridges, periodic inspection and proper maintenance are indispensable. However, the transportation system faces unprecedented challenges because the number of aging bridges is increasing under limited resources, both in terms of budget and personnel. Therefore, innovative technologies and processes that enable bridge owners to inspect and evaluate bridge conditions more effectively and efficiently with less human and monetary resources are desired. Traditionally, qualified engineers and inspectors implemented hammer sounding and/or chain drag, and visual inspection for concrete bridge deck evaluations, but these methods require substantial field labor, experience, and lane closures for bridge deck inspections. Under these circumstances, Non-Destructive Evaluation (NDE) techniques such as computer vision-based crack detection, impact echo (IE), ground-penetrating radar (GPR) and infrared thermography (IRT) have been developed to inspect and monitor aging and deteriorating structures rapidly and effectively. However, no single method can detect all kinds of defects in concrete structures as well as the traditional inspection combination of visual and sounding inspections; hence, there is still no international standard NDE methods for concrete bridges, although significant progress has been made up to the present.This research presents the potential to reduce a burden of bridge inspections, especially for bridge decks, in place of traditional chain drag and hammer sounding methods by IRT with the combination of computer vision-based technology. However, there were still several challenges and uncertainties in using IRT for bridge inspections. This study revealed those challenges and uncertainties, and explored those solutions, proper methods and ideal conditions for applying IRT in order to enhance the usability, reliability and accuracy of IRT for concrete bridge inspections. Throughout the study, detailed investigations of IRT are presented. Firstly, three different types of infrared (IR) cameras were compared under active IRT conditions in the laboratory to examine the effect of photography angle on IRT along with the specifications of cameras. The results showed that when IR images are taken from a certain angle, each camera shows different temperature readings. However, since each IR camera can capture temperature differences between sound and delaminated areas, they have a potential to detect delaminated areas under a given condition in spite of camera specifications even when they are utilized from a certain angle. Furthermore, a more objective data analysis method than just comparing IR images was explored to assess IR data. Secondly, coupled structural mechanics and heat transfer models of concrete blocks with artificial delaminations used for a field test were developed and analyzed to explore sensitive parameters for effective utilization of IRT. After these finite element (FE) models were validated, critical parameters and factors of delamination detectability such as the size of delamination (area, thickness and volume), ambient temperature and sun loading condition (different season), and the depth of delamination from the surface were explored. This study presents that the area of delamination is much more influential in the detectability of IRT than thickness and volume. It is also found that there is no significant difference depending on the season when IRT is employed. Then, FE model simulations were used to obtain the temperature differences between sound and delaminated areas in order to process IR data. By using this method, delaminated areas of concrete slabs could be detected more objectively than by judging the color contrast of IR images. However, it was also found that the boundary condition affects the accuracy of this method, and the effect varies depending on the data collection time. Even though there are some limitations, integrated use of FE model simulation with IRT showed that the combination can be reduce other pre-tests on bridges, reduce the need to have access to the bridge and also can help automate the IRT data analysis process for concrete bridge deck inspections. After that, the favorable time windows for concrete bridge deck inspections by IRT were explored through field experiment and FE model simulations. Based on the numerical simulations and experimental IRT results, higher temperature differences in the day were observed from both results around noontime and nighttime, although IRT is affected by sun loading during the daytime heating cycle resulting in possible misdetections. Furthermore, the numerical simulations show that the maximum effect occurs at night during the nighttime cooling cycle, and the temperature difference decreases gradually from that time to a few hours after sunrise of the next day. Thus, it can be concluded that the nighttime application of IRT is the most suitable time window for bridge decks. Furthermore, three IR cameras with different specifications were compared to explore several factors affecting the utilization of IRT in regards to subsurface damage detection in concrete structures, specifically when the IRT is utilized for high-speed bridge deck inspections at normal driving speeds under field laboratory conditions. The results show that IRT can detect up to 2.54 cm delamination from the concrete surface at any time period. This study revealed two important factors of camera specifications for high-speed inspection by IRT as shorter integration time and higher pixel resolution.Finally, a real bridge was scanned by three different types of IR cameras and the results were compared with other NDE technologies that were implemented by other researchers on the same bridge. When compared at fully documented locations with 8 concrete cores, a high-end IR camera with cooled detector distinguished sound and delaminated areas accurately. Furthermore, indicated location and shape of delaminations by three IR cameras were compared to other NDE methods from past research, and the result revealed that the cooled camera showed almost identical shapes to other NDE methods including chain drag. It should be noted that the data were collected at normal driving speed without any lane closures, making it a more practical and faster method than other NDE technologies. It was also presented that the factor most likely to affect high-speed application is integration time of IR camera as well as the conclusion of the field laboratory test.The notable contribution of this study for the improvement of IRT is that this study revealed the preferable conditions for IRT, specifically for high-speed scanning of concrete bridge decks. This study shows that IRT implementation under normal driving speeds has high potential to evaluate concrete bridge decks accurately without any lane closures much more quickly than other NDE methods, if a cooled camera equipped with higher pixel resolution is used during nighttime. Despite some limitations of IRT, the data collection speed is a great advantage for periodic bridge inspections compared to other NDE methods. Moreover, there is a high possibility to reduce inspection time, labor and budget drastically if high-speed bridge deck scanning by the combination of IRT and computer vision-based technology becomes a standard bridge deck inspection method. Therefore, the author recommends combined application of the high-speed scanning combination and other NDE methods to optimize bridge deck inspections.
Show less - Date Issued
- 2016
- Identifier
- CFE0006323, ucf:51575
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006323
- Title
- Computer Vision Based Structural Identification Framework for Bridge Health Mornitoring.
- Creator
-
Khuc, Tung, Catbas, Necati, Oloufa, Amr, Mackie, Kevin, Zaurin, Ricardo, Shah, Mubarak, University of Central Florida
- Abstract / Description
-
The objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle...
Show moreThe objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using full non-contact approach using video/image processing, c) image-based structural identification using input-output measurements and new damage indicators. The input (loading) data due vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing computer vision algorithms (detection, classification, and localization of objects) based on the video images of vehicles. Meanwhile, the output data as structural displacements are also obtained by defining and tracking image key-points of measurement locations. Subsequently, the input and output data sets are analyzed to construct novel types of damage indicators, named Unit Influence Surface (UIS). Finally, the new damage detection and localization framework is introduced that does not require a network of sensors, but much less number of sensors.The main research significance is the first time development of algorithms that transform the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge assessment within the context of Structural Identification with input and output characterization. The study exploits the unique attributes of computer vision systems, where the signal is continuous in space. This requires new adaptations and transformations that can handle computer vision data/signals for structural engineering applications. This research will significantly advance current sensor-based structural health monitoring with computer-vision techniques, leading to practical applications for damage detection of complex structures with a novel approach. By using computer vision algorithms and cameras as special sensors for structural health monitoring, this study proposes an advance approach in bridge monitoring through which certain type of data that could not be collected by conventional sensors such as vehicle loads and location, can be obtained practically and accurately.
Show less - Date Issued
- 2016
- Identifier
- CFE0006127, ucf:51174
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006127
- Title
- Spectrum Map and its Application in Cognitive Radio Networks.
- Creator
-
Debroy, Saptarshi, Chatterjee, Mainak, Bassiouni, Mostafa, Zou, Changchun, Jha, Sumit, Catbas, Necati, University of Central Florida
- Abstract / Description
-
Recent measurements on radio spectrum usage have revealed the abundance of underutilizedbands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access. Cognitive radio based secondary networks thatutilize such unused spectrum holes in the licensed band, have been proposed as a possible solution to the spectrum crisis. The idea is to detect times when a particular licensed band is unused and use it for transmission without causing...
Show moreRecent measurements on radio spectrum usage have revealed the abundance of underutilizedbands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access. Cognitive radio based secondary networks thatutilize such unused spectrum holes in the licensed band, have been proposed as a possible solution to the spectrum crisis. The idea is to detect times when a particular licensed band is unused and use it for transmission without causing interference to the licensed user. We argue that prior knowledge about occupancy of such bands and the corresponding achievable performance metrics can potentially help secondary networks to devise effective strategiesto improve utilization.In this work, we use Shepard's method of interpolation to create a spectrum mapthat provides a spatial distribution of spectrum usage over a region of interest. It is achieved by intelligently fusing the spectrum usage reports shared by the secondary nodes at various locations. The obtained spectrum map is a continuous and differentiable 2-dimension distribution function in space. With the spectrum usage distribution known, we show how different radio spectrum and network performance metrics like channel capacity, secondary network throughput, spectral efficiency, and bit error rate can be estimated. We show the applicability of the spectrum map in solving the intra-cell channel allocation problem incentralized cognitive radio networks, such as IEEE 802.22. We propose a channel allocationscheme where the base station allocates interference free channels to the consumer premise equipments (CPE) using the spectrum map that it creates by fusing the spectrum usage information shared by some CPEs. The most suitable CPEs for information sharing arechosen on a dynamic basis using an iterative clustering algorithm. Next, we present a contention based media access control (MAC) protocol for distributed cognitive radio network. The unlicensed secondary users contend among themselves over a common control channel. Winners of the contention get to access the available channels ensuring high utilization and minimum collision with primary incumbent. Last, we propose a multi-channel, multi-hop routing protocol with secondary transmission power control. The spectrum map, created and maintained by a set of sensors, acts as the basis of finding the best route for every source destination pair. The proposed routing protocol ensures primary receiver protection and maximizes achievable link capacity.Through simulation experiments we show the correctness of the prediction model and how it can be used by secondary networks for strategic positioning of secondary transmitter-receiver pairs and selecting the best candidate channels. The simulation model mimics realistic distribution of TV stations for urban and non-urban areas. Results validate the nature and accuracy of estimation, prediction of performance metrics, and efficiency of the allocation process in an IEEE 802.22 network. Results for the proposed MAC protocol show high channel utilization with primary quality of service degradation within a tolerable limit. Performance evaluation of the proposed routing scheme reveals that it ensures primary receiver protection through secondary power control and maximizes route capacity.
Show less - Date Issued
- 2014
- Identifier
- CFE0005324, ucf:50515
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005324
- Title
- Uncertainty treatment in performance based seismic assessment of typical bridge classes in United States.
- Creator
-
Mehdizadeh Nasrabadi, Mohammad, Mackie, Kevin, Catbas, Necati, Yun, Hae-Bum, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Bridge networks are expensive and complex infrastructures and are essential components of today's transportation systems. Despite the advancement in computer aided modeling and increasing the computational power which is increasing the accessibility for developing the fragility curves of bridges, the complexity of the problem and uncertainties involved in fragility analysis of the bridge structures in addition to difficulties in validating the results obtained from the analysis requires...
Show moreBridge networks are expensive and complex infrastructures and are essential components of today's transportation systems. Despite the advancement in computer aided modeling and increasing the computational power which is increasing the accessibility for developing the fragility curves of bridges, the complexity of the problem and uncertainties involved in fragility analysis of the bridge structures in addition to difficulties in validating the results obtained from the analysis requires precaution in utilization of the results as a decision making tool. The main focus of this research is to address, study and treatment of uncertainties incorporated in various steps of performance based assessments (PBA) of the bridge structures. In this research the uncertainties is divided into three main categories. First, the uncertainties that come from ground motions time and frequency content alteration because of scarcity of the recorded ground motions in the database. Second, uncertainties associated in the modeling and simulation procedure of PBA, and third uncertainties originated from simplistic approach and methods utilized in the conventional procedure of PBA of the structures. Legitimacy of the scaling of ground motions is studied using the response of several simple nonlinear systems to amplitude scaled ground motions suites. Bias in the response obtained compared to unscaled records for both as recorded and synthetic ground motions.Results from this section of the research show the amount of the bias is considerable and can significantly affect the outcome of PBA. The origin of the bias is investigated and consequently a new metric is proposed to predict the bias induced by ground motion scaling without nonlinear analysis. Results demonstrate that utilizing the predictor as a scaling parameter can significantly reduce the bias for various nonlinear structures. Therefore utilizing the new metric as the intensity measuring parameter of the ground motions is recommended in PBA. To address the uncertainties associated in the modeling and simulation, MSSS concrete girder bridge class were selected due to the frequency of the construction in USCS region and lack of seismic detailing. A large scale parameters screening study is performed using Placket-Burman experimental design that considers a more complete group of parameters to decrease the computational expense of probabilistic study of the structure's seismic response. Fragility analysis for MSSS bridge is performed and the effect of removing the lesser important parameters the probabilistic demand model was investigated. This study reveals parameters reduction based on screening study techniques can be utilized to increase efficiency in fragility analysis procedure without compromising the accuracy of the outcome. The results from this study also provides more direct information on parameter reduction for PBA as well as provide insight into where future investments into higher fidelity finite element and constitutive models should be targeted. Conventional simplistic PBA approach does not account for the fundamental correlation between demand and capacity models. A more comprehensive PBA approach is presented and fragility analysis is performed with implementation of a new formulation in the component fragility analysis for MSSS bridge class and the outcome is compared with the one from conventional procedure. The results shows the correlation between demand and capacity affects the outcome of PBA and the fragility functions variation is not negligible. Therefore using the presented approach is necessary when accuracy is needed.
Show less - Date Issued
- 2014
- Identifier
- CFE0005531, ucf:50309
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005531
- Title
- Applications of Computer Vision Technologies of Automated Crack Detection and Quantification for the Inspection of Civil Infrastructure Systems.
- Creator
-
Wu, Liuliu, Yun, Hae-Bum, Nam, Boo Hyun, Catbas, Necati, Foroosh, Hassan, University of Central Florida
- Abstract / Description
-
Many components of existing civil infrastructure systems, such as road pavement, bridges, and buildings, are suffered from rapid aging, which require enormous nation's resources from federal and state agencies to inspect and maintain them. Crack is one of important material and structural defects, which must be inspected not only for good maintenance of civil infrastructure with a high quality of safety and serviceability, but also for the opportunity to provide early warning against failure....
Show moreMany components of existing civil infrastructure systems, such as road pavement, bridges, and buildings, are suffered from rapid aging, which require enormous nation's resources from federal and state agencies to inspect and maintain them. Crack is one of important material and structural defects, which must be inspected not only for good maintenance of civil infrastructure with a high quality of safety and serviceability, but also for the opportunity to provide early warning against failure. Conventional human visual inspection is still considered as the primary inspection method. However, it is well established that human visual inspection is subjective and often inaccurate. In order to improve current manual visual inspection for crack detection and evaluation of civil infrastructure, this study explores the application of computer vision techniques as a non-destructive evaluation and testing (NDE(&)T) method for automated crack detection and quantification for different civil infrastructures. In this study, computer vision-based algorithms were developed and evaluated to deal with different situations of field inspection that inspectors could face with in crack detection and quantification. The depth, the distance between camera and object, is a necessary extrinsic parameter that has to be measured to quantify crack size since other parameters, such as focal length, resolution, and camera sensor size are intrinsic, which are usually known by camera manufacturers. Thus, computer vision techniques were evaluated with different crack inspection applications with constant and variable depths. For the fixed-depth applications, computer vision techniques were applied to two field studies, including 1) automated crack detection and quantification for road pavement using the Laser Road Imaging System (LRIS), and 2) automated crack detection on bridge cables surfaces, using a cable inspection robot. For the various-depth applications, two field studies were conducted, including 3) automated crack recognition and width measurement of concrete bridges' cracks using a high-magnification telescopic lens, and 4) automated crack quantification and depth estimation using wearable glasses with stereovision cameras.From the realistic field applications of computer vision techniques, a novel self-adaptive image-processing algorithm was developed using a series of morphological transformations to connect fragmented crack pixels in digital images. The crack-defragmentation algorithm was evaluated with road pavement images. The results showed that the accuracy of automated crack detection, associated with artificial neural network classifier, was significantly improved by reducing both false positive and false negative. Using up to six crack features, including area, length, orientation, texture, intensity, and wheel-path location, crack detection accuracy was evaluated to find the optimal sets of crack features. Lab and field test results of different inspection applications show that proposed compute vision-based crack detection and quantification algorithms can detect and quantify cracks from different structures' surface and depth. Some guidelines of applying computer vision techniques are also suggested for each crack inspection application.
Show less - Date Issued
- 2015
- Identifier
- CFE0005743, ucf:50089
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005743
- Title
- Quantifying Trust and Reputation for Defense against Adversaries in Multi-Channel Dynamic Spectrum Access Networks.
- Creator
-
Bhattacharjee, Shameek, Chatterjee, Mainak, Guha, Ratan, Zou, Changchun, Turgut, Damla, Catbas, Necati, University of Central Florida
- Abstract / Description
-
Dynamic spectrum access enabled by cognitive radio networks are envisioned to drivethe next generation wireless networks that can increase spectrum utility by opportunisticallyaccessing unused spectrum. Due to the policy constraint that there could be no interferenceto the primary (licensed) users, secondary cognitive radios have to continuously sense forprimary transmissions. Typically, sensing reports from multiple cognitive radios are fusedas stand-alone observations are prone to errors...
Show moreDynamic spectrum access enabled by cognitive radio networks are envisioned to drivethe next generation wireless networks that can increase spectrum utility by opportunisticallyaccessing unused spectrum. Due to the policy constraint that there could be no interferenceto the primary (licensed) users, secondary cognitive radios have to continuously sense forprimary transmissions. Typically, sensing reports from multiple cognitive radios are fusedas stand-alone observations are prone to errors due to wireless channel characteristics. Suchdependence on cooperative spectrum sensing is vulnerable to attacks such as SecondarySpectrum Data Falsification (SSDF) attacks when multiple malicious or selfish radios falsifythe spectrum reports. Hence, there is a need to quantify the trustworthiness of radios thatshare spectrum sensing reports and devise malicious node identification and robust fusionschemes that would lead to correct inference about spectrum usage.In this work, we propose an anomaly monitoring technique that can effectively cap-ture anomalies in the spectrum sensing reports shared by individual cognitive radios duringcooperative spectrum sensing in a multi-channel distributed network. Such anomalies areused as evidence to compute the trustworthiness of a radio by its neighbours. The proposedanomaly monitoring technique works for any density of malicious nodes and for any physicalenvironment. We propose an optimistic trust heuristic for a system with a normal risk attitude and show that it can be approximated as a beta distribution. For a more conservativesystem, we propose a multinomial Dirichlet distribution based conservative trust framework,where Josang's Belief model is used to resolve any uncertainty in information that mightarise during anomaly monitoring. Using a machine learning approach, we identify maliciousnodes with a high degree of certainty regardless of their aggressiveness and variations intro-duced by the pathloss environment. We also propose extensions to the anomaly monitoringtechnique that facilitate learning about strategies employed by malicious nodes and alsoutilize the misleading information they provide. We also devise strategies to defend against a collaborative SSDF attack that islaunched by a coalition of selfish nodes. Since, defense against such collaborative attacks isdifficult with popularly used voting based inference models or node centric isolation techniques, we propose a channel centric Bayesian inference approach that indicates how much the collective decision on a channels occupancy inference can be trusted. Based on the measured observations over time, we estimate the parameters of the hypothesis of anomalous andnon-anomalous events using a multinomial Bayesian based inference. We quantitatively define the trustworthiness of a channel inference as the difference between the posterior beliefsassociated with anomalous and non-anomalous events. The posterior beliefs are updated based on a weighted average of the prior information on the belief itself and the recently observed data.Subsequently, we propose robust fusion models which utilize the trusts of the nodes to improve the accuracy of the cooperative spectrum sensing decisions. In particular, we propose three fusion models: (i) optimistic trust based fusion, (ii) conservative trust based fusion, and (iii) inversion based fusion. The former two approaches exclude untrustworthy sensing reports for fusion, while the last approach utilizes misleading information. Allschemes are analyzed under various attack strategies. We propose an asymmetric weightedmoving average based trust management scheme that quickly identifies on-off SSDF attacks and prevents quick trust redemption when such nodes revert back to temporal honest behavior. We also provide insights on what attack strategies are more effective from the adversaries' perspective.Through extensive simulation experiments we show that the trust models are effective in identifying malicious nodes with a high degree of certainty under variety of network and radio conditions. We show high true negative detection rates even when multiple malicious nodes launch collaborative attacks which is an improvement over existing voting based exclusion and entropy divergence techniques. We also show that we are able to improve the accuracy of fusion decisions compared to other popular fusion techniques. Trust based fusion schemes show worst case decision error rates of 5% while inversion based fusion show 4% as opposed majority voting schemes that have 18% error rate. We also show that the proposed channel centric Bayesian inference based trust model is able to distinguish between attacked and non-attacked channels for both static and dynamic collaborative attacks. We are also able to show that attacked channels have significantly lower trust values than channels that are not(-) a metric that can be used by nodes to rank the quality of inference on channels.
Show less - Date Issued
- 2015
- Identifier
- CFE0005764, ucf:50081
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005764
- Title
- Analytical study of computer vision-based pavement crack quantification using machine learning techniques.
- Creator
-
Mokhtari, Soroush, Yun, Hae-Bum, Nam, Boo Hyun, Catbas, Necati, Shah, Mubarak, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Image-based techniques are a promising non-destructive approach for road pavement condition evaluation. The main objective of this study is to extract, quantify and evaluate important surface defects, such as cracks, using an automated computer vision-based system to provide a better understanding of the pavement deterioration process. To achieve this objective, an automated crack-recognition software was developed, employing a series of image processing algorithms of crack extraction, crack...
Show moreImage-based techniques are a promising non-destructive approach for road pavement condition evaluation. The main objective of this study is to extract, quantify and evaluate important surface defects, such as cracks, using an automated computer vision-based system to provide a better understanding of the pavement deterioration process. To achieve this objective, an automated crack-recognition software was developed, employing a series of image processing algorithms of crack extraction, crack grouping, and crack detection. Bottom-hat morphological technique was used to remove the random background of pavement images and extract cracks, selectively based on their shapes, sizes, and intensities using a relatively small number of user-defined parameters. A technical challenge with crack extraction algorithms, including the Bottom-hat transform, is that extracted crack pixels are usually fragmented along crack paths. For de-fragmenting those crack pixels, a novel crack-grouping algorithm is proposed as an image segmentation method, so called MorphLink-C. Statistical validation of this method using flexible pavement images indicated that MorphLink-C not only improves crack-detection accuracy but also reduces crack detection time.Crack characterization was performed by analysing imagerial features of the extracted crack image components. A comprehensive statistical analysis was conducted using filter feature subset selection (FSS) methods, including Fischer score, Gini index, information gain, ReliefF, mRmR, and FCBF to understand the statistical characteristics of cracks in different deterioration stages. Statistical significance of crack features was ranked based on their relevancy and redundancy. The statistical method used in this study can be employed to avoid subjective crack rating based on human visual inspection. Moreover, the statistical information can be used as fundamental data to justify rehabilitation policies in pavement maintenance.Finally, the application of four classification algorithms, including Artificial Neural Network (ANN), Decision Tree (DT), k-Nearest Neighbours (kNN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) is investigated for the crack detection framework. The classifiers were evaluated in the following five criteria: 1) prediction performance, 2) computation time, 3) stability of results for highly imbalanced datasets in which, the number of crack objects are significantly smaller than the number of non-crack objects, 4) stability of the classifiers performance for pavements in different deterioration stages, and 5) interpretability of results and clarity of the procedure. Comparison results indicate the advantages of white-box classification methods for computer vision based pavement evaluation. Although black-box methods, such as ANN provide superior classification performance, white-box methods, such as ANFIS, provide useful information about the logic of classification and the effect of feature values on detection results. Such information can provide further insight for the image-based pavement crack detection application.
Show less - Date Issued
- 2015
- Identifier
- CFE0005671, ucf:50186
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005671