Current Search: Gonzalez, Avelino (x)
View All Items
Pages
- Title
- Learning Opportunities and Challenges of Sensor-enabled Intelligent Tutoring Systems on Mobile Platforms: Benchmarking the Reliability of Mobile Sensors to Track Human Physiological Signals and Behaviors to Enhance Tablet-Based Intelligent Tutoring Systems.
- Creator
-
Vazquez, Luis, Proctor, Michael, Jentsch, Florian, Gonzalez, Avelino, Sottilare, Robert, University of Central Florida
- Abstract / Description
-
Desktop-based intelligent tutoring systems have existed for many decades, but the advancement of mobile computing technologies has sparked interest in developing mobile intelligent tutoring systems (mITS). Personalized mITS are applicable to not only stand-alone and client-server systems but also cloud systems possibly leveraging big data. Device-based sensors enable even greater personalization through capture of physiological signals during periods of student study. However, personalizing...
Show moreDesktop-based intelligent tutoring systems have existed for many decades, but the advancement of mobile computing technologies has sparked interest in developing mobile intelligent tutoring systems (mITS). Personalized mITS are applicable to not only stand-alone and client-server systems but also cloud systems possibly leveraging big data. Device-based sensors enable even greater personalization through capture of physiological signals during periods of student study. However, personalizing mITS to individual students faces challenges. The Achilles heel of personalization is the feasibility and reliability of these sensors to accurately capture physiological signals and behavior measures.This research reviews feasibility and benchmarks reliability of basic mobile platform sensors in various student postures. The research software and methodology are generalizable to a range of platforms and sensors. Incorporating the tile-based puzzle game 2048 as a substitute for a knowledge domain also enables a broad spectrum of test populations. Baseline sensors include the on-board camera to detect eyes/faces and the Bluetooth Empatica E4 wristband to capture heart rate, electrodermal activity (EDA), and skin temperature. The test population involved 100 collegiate students randomly assigned to one of three different ergonomic positions in a classroom: sitting at a table, standing at a counter, or reclining on a sofa. Well received by the students, EDA proved to be more reliable than heart rate or face detection in the three different ergonomic positions. Additional insights are provided on advancing learning personalization through future sensor feasibility and reliability studies.
Show less - Date Issued
- 2018
- Identifier
- CFE0007260, ucf:52177
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007260
- Title
- Evolution Through the Search for Novelty.
- Creator
-
Lehman, Joel, Stanley, Kenneth, Gonzalez, Avelino, Wiegand, Rudolf, Hoffman, Eric, University of Central Florida
- Abstract / Description
-
I present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima.As a significant problem in...
Show moreI present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima.As a significant problem in evolutionary computation, deception has inspired many techniques designed to mitigate it. However, nearly all such methods are still ultimately susceptible to deceptive local optima because they still measure progress with respect to the objective, which this dissertation will show is often a broken compass. Furthermore, although novelty search completely abandons the objective, it counterintuitively often outperforms methods that search directly for the objective in deceptive tasks and can induce evolutionary dynamics closer in spirit to natural evolution. The main contributions are to (1) introduce novelty search, an example of an effective search method that is not guided by actively measuring or encouraging objective progress; (2) validate novelty search by applying it to biped locomotion; (3) demonstrate novelty search's benefits for evolvability (i.e. the abilityof an organism to further evolve) in a variety of domains; (4) introduce an extension of novelty search called minimal criteria novelty search that brings a new abstraction of natural evolution to evolutionary computation (i.e. evolution as a search for many ways of meeting the minimal criteria of life); (5) present a second extension of novelty search called novelty search with local competition that abstracts evolution instead as a process driven towards diversity with competition playing a subservient role; and (6) evolve a diversity of functional virtual creatures in a single run as a culminating application of novelty search with local competition. Overall these contributions establish novelty search as an important new research direction for the field of evolutionary computation.
Show less - Date Issued
- 2012
- Identifier
- CFE0004398, ucf:49390
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004398
- Title
- Life Long Learning in Sparse Learning Environments.
- Creator
-
Reeder, John, Georgiopoulos, Michael, Gonzalez, Avelino, Sukthankar, Gita, Anagnostopoulos, Georgios, University of Central Florida
- Abstract / Description
-
Life long learning is a machine learning technique that deals with learning sequential tasks over time. It seeks to transfer knowledge from previous learning tasks to new learning tasks in order to increase generalization performance and learning speed. Real-time learning environments in which many agents are participating may provide learning opportunities but they are spread out in time and space outside of the geographical scope of a single learning agent. This research seeks to provide an...
Show moreLife long learning is a machine learning technique that deals with learning sequential tasks over time. It seeks to transfer knowledge from previous learning tasks to new learning tasks in order to increase generalization performance and learning speed. Real-time learning environments in which many agents are participating may provide learning opportunities but they are spread out in time and space outside of the geographical scope of a single learning agent. This research seeks to provide an algorithm and framework for life long learning among a network of agents in a sparse real-time learning environment. This work will utilize the robust knowledge representation of neural networks, and make use of both functional and representational knowledge transfer to accomplish this task. A new generative life long learning algorithm utilizing cascade correlation and reverberating pseudo-rehearsal and incorporating a method for merging divergent life long learning paths will be implemented.
Show less - Date Issued
- 2013
- Identifier
- CFE0004917, ucf:49601
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004917
- Title
- Modeling User Transportation Patterns Using Mobile Devices.
- Creator
-
Davami, Erfan, Sukthankar, Gita, Gonzalez, Avelino, Foroosh, Hassan, Sukthankar, Rahul, University of Central Florida
- Abstract / Description
-
Participatory sensing frameworks use humans and their computing devices as a large mobile sensing network. Dramatic accessibility and affordability have turned mobile devices (smartphone and tablet computers) into the most popular computational machines in the world, exceeding laptops. By the end of 2013, more than 1.5 billion people on earth will have a smartphone. Increased coverage and higher speeds of cellular networks have given these devices the power to constantly stream large amounts...
Show moreParticipatory sensing frameworks use humans and their computing devices as a large mobile sensing network. Dramatic accessibility and affordability have turned mobile devices (smartphone and tablet computers) into the most popular computational machines in the world, exceeding laptops. By the end of 2013, more than 1.5 billion people on earth will have a smartphone. Increased coverage and higher speeds of cellular networks have given these devices the power to constantly stream large amounts of data.Most mobile devices are equipped with advanced sensors such as GPS, cameras, and microphones. This expansion of smartphone numbers and power has created a sensing system capable of achieving tasks practically impossible for conventional sensing platforms. One of the advantages of participatory sensing platforms is their mobility, since human users are often in motion. This dissertation presents a set of techniques for modeling and predicting user transportation patterns from cell-phone and social media check-ins. To study large-scale transportation patterns, I created a mobile phone app, Kpark, for estimating parking lot occupancy on the UCF campus. Kpark aggregates individual user reports on parking space availability to produce a global picture across all the campus lots using crowdsourcing. An issue with crowdsourcing is the possibility of receiving inaccurate information from users, either through error or malicious motivations. One method of combating this problem is to model the trustworthiness of individual participants to use that information to selectively include or discard data.This dissertation presents a comprehensive study of the performance of different worker quality and data fusion models with plausible simulated user populations, as well as an evaluation of their performance on the real data obtained from a full release of the Kpark app on the UCF Orlando campus. To evaluate individual trust prediction methods, an algorithm selection portfolio was introduced to take advantage of the strengths of each method and maximize the overall prediction performance.Like many other crowdsourced applications, user incentivization is an important aspect of creating a successful crowdsourcing workflow. For this project a form of non-monetized incentivization called gamification was used in order to create competition among users with the aim of increasing the quantity and quality of data submitted to the project. This dissertation reports on the performance of Kpark at predicting parking occupancy, increasing user app usage, and predicting worker quality.
Show less - Date Issued
- 2015
- Identifier
- CFE0005597, ucf:50258
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005597
- Title
- Learning Internal State Memory Representations from Observation.
- Creator
-
Wong, Josiah, Gonzalez, Avelino, Liu, Fei, Wu, Annie, Ontanon, Santiago, Wiegand, Rudolf, University of Central Florida
- Abstract / Description
-
Learning from Observation (LfO) is a machine learning paradigm that mimics how people learn in daily life: learning how to do something simply by watching someone else do it. LfO has been used in various applications, from video game agent creation to driving a car, but it has always been limited by the inability of an observer to know what a performing entity chooses to remember as they act in an environment. Various methods have either ignored the effects of memory or otherwise made...
Show moreLearning from Observation (LfO) is a machine learning paradigm that mimics how people learn in daily life: learning how to do something simply by watching someone else do it. LfO has been used in various applications, from video game agent creation to driving a car, but it has always been limited by the inability of an observer to know what a performing entity chooses to remember as they act in an environment. Various methods have either ignored the effects of memory or otherwise made simplistic assumptions about its structure. In this dissertation, we propose a new method, Memory Composition Learning, that captures the influence of a performer's memory in an observed behavior through the creation of an auxiliary memory feature set that explicitly models the aspects of the environment with significance for future decisions, and which can be used with a machine learning technique to provide salient information from memory. It advances the state of the art by automatically learning the internal structure of memory instead of ignoring or predefining it. This research is difficult in that memory modeling is an unsupervised learning problem that we elect to solve solely from unobtrusive observation. This research is significant for LfO in that it will allow learning techniques that otherwise could not use information from memory to use a tailored set of learned memory features that capture salient influences from memory and enable decision-making based on these influences for more effective learning performance. To validate our hypothesis, we implemented a prototype for modeling observed memory influences with our approach and applied it to simulated vacuum cleaner and lawn mower domains. Our investigation revealed that MCL was able to automatically learn memory features that describe the influences on an observed actor's internal state, and which improved learning performance of observed behaviors.
Show less - Date Issued
- 2019
- Identifier
- CFE0007879, ucf:52755
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007879
- Title
- Environmental Physical(-)Virtual Interaction to Improve Social Presence with a Virtual Human in Mixed Reality.
- Creator
-
Kim, Kangsoo, Welch, Gregory, Gonzalez, Avelino, Sukthankar, Gita, Bruder, Gerd, Fiore, Stephen, University of Central Florida
- Abstract / Description
-
Interactive Virtual Humans (VHs) are increasingly used to replace or assist real humans in various applications, e.g., military and medical training, education, or entertainment. In most VH research, the perceived social presence with a VH, which denotes the user's sense of being socially connected or co-located with the VH, is the decisive factor in evaluating the social influence of the VH(-)a phenomenon where human users' emotions, opinions, or behaviors are affected by the VH. The purpose...
Show moreInteractive Virtual Humans (VHs) are increasingly used to replace or assist real humans in various applications, e.g., military and medical training, education, or entertainment. In most VH research, the perceived social presence with a VH, which denotes the user's sense of being socially connected or co-located with the VH, is the decisive factor in evaluating the social influence of the VH(-)a phenomenon where human users' emotions, opinions, or behaviors are affected by the VH. The purpose of this dissertation is to develop new knowledge about how characteristics and behaviors of a VH in a Mixed Reality (MR) environment can affect the perception of and resulting behavior with the VH, and to find effective and efficient ways to improve the quality and performance of social interactions with VHs. Important issues and challenges in real(-)virtual human interactions in MR, e.g., lack of physical(-)virtual interaction, are identified and discussed through several user studies incorporating interactions with VH systems. In the studies, different features of VHs are prototyped and evaluated, such as a VH's ability to be aware of and influence the surrounding physical environment, while measuring objective behavioral data as well as collecting subjective responses from the participants. The results from the studies support the idea that the VH's awareness and influence of the physical environment can improve not only the perceived social presence with the VH, but also the trustworthiness of the VH within a social context. The findings will contribute towards designing more influential VHs that can benefit a wide range of simulation and training applications for which a high level of social realism is important, and that can be more easily incorporated into our daily lives as social companions, providing reliable relationships and convenience in assisting with daily tasks.
Show less - Date Issued
- 2018
- Identifier
- CFE0007340, ucf:52115
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007340
- Title
- Context-Centric Affect Recognition From Paralinguistic Features of Speech.
- Creator
-
Marpaung, Andreas, Gonzalez, Avelino, DeMara, Ronald, Sukthankar, Gita, Wu, Annie, Lisetti, Christine, University of Central Florida
- Abstract / Description
-
As the field of affect recognition has progressed, many researchers have shifted from having unimodal approaches to multimodal ones. In particular, the trends in paralinguistic speech affect recognition domain have been to integrate other modalities such as facial expression, body posture, gait, and linguistic speech. Our work focuses on integrating contextual knowledge into paralinguistic speech affect recognition. We hypothesize that a framework to recognize affect through paralinguistic...
Show moreAs the field of affect recognition has progressed, many researchers have shifted from having unimodal approaches to multimodal ones. In particular, the trends in paralinguistic speech affect recognition domain have been to integrate other modalities such as facial expression, body posture, gait, and linguistic speech. Our work focuses on integrating contextual knowledge into paralinguistic speech affect recognition. We hypothesize that a framework to recognize affect through paralinguistic features of speech can improve its performance by integrating relevant contextual knowledge. This dissertation describes our research to integrate contextual knowledge into the paralinguistic affect recognition process from acoustic features of speech. We conceived, built, and tested a two-phased system called the Context-Based Paralinguistic Affect Recognition System (CxBPARS). The first phase of this system is context-free and uses the AdaBoost classifier that applies data on the acoustic pitch, jitter, shimmer, Harmonics-to-Noise Ratio (HNR), and the Noise-to-Harmonics Ratio (NHR) to make an initial judgment about the emotion most likely exhibited by the human elicitor. The second phase then adds context modeling to improve upon the context-free classifications from phase I. CxBPARS was inspired by a human subject study performed as part of this work where test subjects were asked to classify an elicitor's emotion strictly from paralinguistic sounds, and then subsequently provided with contextual information to improve their selections. CxBPARS was rigorously tested and found to, at the worst case, improve the success rate from the state-of-the-art's 42% to 53%.
Show less - Date Issued
- 2019
- Identifier
- CFE0007836, ucf:52831
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007836
- Title
- Leveraging Help Requests in POMDP Intelligent Tutors.
- Creator
-
Folsom-Kovarik, Jeremiah, Sukthankar, Gita, Schatz, Sarah, Gonzalez, Avelino, Shumaker, Randall, Schatz, Sarah, University of Central Florida
- Abstract / Description
-
Intelligent tutoring systems (ITSs) are computer programs that model individual learners and adapt instruction to help each learner differently. One way ITSs differ from human tutors is that few ITSs give learners a way to ask questions. When learners can ask for help, their questions have the potential to improve learning directly and also act as a new source of model data to help the ITS personalize instruction. Inquiry modeling gives ITSs the ability to answer learner questions and refine...
Show moreIntelligent tutoring systems (ITSs) are computer programs that model individual learners and adapt instruction to help each learner differently. One way ITSs differ from human tutors is that few ITSs give learners a way to ask questions. When learners can ask for help, their questions have the potential to improve learning directly and also act as a new source of model data to help the ITS personalize instruction. Inquiry modeling gives ITSs the ability to answer learner questions and refine their learner models with an inexpensive new input channel.In order to support inquiry modeling, an advanced planning formalism is applied to ITS learner modeling. Partially observable Markov decision processes (POMDPs) differ from more widely used ITS architectures because they can plan complex action sequences in uncertain situations with machine learning. Tractability issues have previously precluded POMDP use in ITS models. This dissertation introduces two improvements, priority queues and observation chains, to make POMDPs scale well and encompass the large problem sizes that real-world ITSs must confront. A new ITS was created to support trainees practicing a military task in a virtual environment. The development of the Inquiry Modeling POMDP Adaptive Trainer (IMP) began with multiple formative studies on human and simulated learners that explored inquiry modeling and POMDPs in intelligent tutoring. The studies suggest the new POMDP representations will be effective in ITS domains having certain common characteristics.Finally, a summative study evaluated IMP's ability to train volunteers in specific practice scenarios. IMP users achieved post-training scores averaging up to 4.5 times higher than users who practiced without support and up to twice as high as trainees who used an ablated version of IMP with no inquiry modeling. IMP's implementation and evaluation helped explore questions about how inquiry modeling and POMDP ITSs work, while empirically demonstrating their efficacy.
Show less - Date Issued
- 2012
- Identifier
- CFE0004506, ucf:49262
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004506
- Title
- Novelty-Assisted Interactive Evolution of Control Behaviors.
- Creator
-
Woolley, Brian, Stanley, Kenneth, Hughes, Charles, Gonzalez, Avelino, Wu, Annie, Hancock, Peter, University of Central Florida
- Abstract / Description
-
The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact...
Show moreThe field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can then request that the next generation be filled with novel descendants, as opposed to only the direct descendants of typical IEC. The result of such an approach, unconstrained by a priori objectives, is that it traverses key stepping stones that ultimately accumulate meaningful domain knowledge.To establishes this new evolutionary approach based on the serendipitous discovery of key stepping stones during evolution, this dissertation consists of four key contributions: (1) The first contribution establishes the deleterious effects of a priori objectives on evolution. The second (2) introduces the NA-IEC approach as an alternative to traditional objective-based approaches. The third (3) is a proof-of-concept that demonstrates how combining human insight with novelty search finds solutions significantly faster and at lower genomic complexities than fully-automated processes, including pure novelty search, suggesting an important role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied in a challenge domain wherein leveraging human intuition and domain knowledge accelerates the evolution of solutions for the nontrivial octopus-arm control task. The culmination of these contributions demonstrates the importance of incorporating human insights into simulated evolution as a means to discovering better solutions more rapidly than traditional approaches.
Show less - Date Issued
- 2012
- Identifier
- CFE0004462, ucf:49335
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004462
- Title
- Harmony: An Architecture for Network Centric Heterogeneous Terrain Database Re-Generation.
- Creator
-
Graniela Ortiz, Benito, Proctor, Michael, Gonzalez, Avelino, Wiegand, Rudolf, Goldiez, Brian, Cox, Robert, University of Central Florida
- Abstract / Description
-
This research investigated an alternative modeling and simulation terrain database generation paradigm that rapidly harmonizes changes target formats throughout a distributed simulation system while accommodating bandwidth and processing time limitations. This dissertation proposes a (")distributed partial bi-directional terrain database re-generation(") paradigm, which envisions network based terrain database updates between reliable partners. The approach is very attractive as it reduces...
Show moreThis research investigated an alternative modeling and simulation terrain database generation paradigm that rapidly harmonizes changes target formats throughout a distributed simulation system while accommodating bandwidth and processing time limitations. This dissertation proposes a (")distributed partial bi-directional terrain database re-generation(") paradigm, which envisions network based terrain database updates between reliable partners. The approach is very attractive as it reduces the amount of processing and bandwidth required to distribute locally emergent changes throughout a distributed system by only updating the affected target format data elements. In the prototype theoretical architecture that implements the approach, agent theory and ontologies are used to interpret data changes in external target formats and implement the necessary transformations on a server internal terrain database generation system. These changes are then distributed to clients to achieve consistency between all correlated representations. Experimental findings with the prototype suggests smaller network utilization and processing times than conventional terrain database generation will experience while maintaining correlated heterogeneous terrain database representations overtime. This Bi-Directional Ontology-driven TDB Re-Generation Architecture has the potential to revolutionize the traditional terrain database generation pipeline paradigm.
Show less - Date Issued
- 2011
- Identifier
- CFE0004475, ucf:49315
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004475
- Title
- Batch and Online Implicit Weighted Gaussian Processes for Robust Novelty Detection.
- Creator
-
Ramirez Padron, Ruben, Gonzalez, Avelino, Georgiopoulos, Michael, Stanley, Kenneth, Mederos, Boris, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
This dissertation aims mainly at obtaining robust variants of Gaussian processes (GPs) that do not require using non-Gaussian likelihoods to compensate for outliers in the training data. Bayesian kernel methods, and in particular GPs, have been used to solve a variety of machine learning problems, equating or exceeding the performance of other successful techniques. That is the case of a recently proposed approach to GP-based novelty detection that uses standard GPs (i.e. GPs employing...
Show moreThis dissertation aims mainly at obtaining robust variants of Gaussian processes (GPs) that do not require using non-Gaussian likelihoods to compensate for outliers in the training data. Bayesian kernel methods, and in particular GPs, have been used to solve a variety of machine learning problems, equating or exceeding the performance of other successful techniques. That is the case of a recently proposed approach to GP-based novelty detection that uses standard GPs (i.e. GPs employing Gaussian likelihoods). However, standard GPs are sensitive to outliers in training data, and this limitation carries over to GP-based novelty detection. This limitation has been typically addressed by using robust non-Gaussian likelihoods. However, non-Gaussian likelihoods lead to analytically intractable inferences, which require using approximation techniques that are typically complex and computationally expensive. Inspired by the use of weights in quasi-robust statistics, this work introduces a particular type of weight functions, called here data weighers, in order to obtain robust GPs that do not require approximation techniques and retain the simplicity of standard GPs. This work proposes implicit weighted variants of batch GP, online GP, and sparse online GP (SOGP) that employ weighted Gaussian likelihoods. Mathematical expressions for calculating the posterior implicit weighted GPs are derived in this work. In our experiments, novelty detection based on our weighted batch GPs consistently and significantly outperformed standard batch GP-based novelty detection whenever data was contaminated with outliers. Additionally, our experiments show that novelty detection based on online GPs can perform similarly to batch GP-based novelty detection. Membership scores previously introduced by other authors are also compared in our experiments.
Show less - Date Issued
- 2015
- Identifier
- CFE0005869, ucf:50858
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005869
- Title
- Confluence of Vision and Natural Language Processing for Cross-media Semantic Relations Extraction.
- Creator
-
Tariq, Amara, Foroosh, Hassan, Qi, GuoJun, Gonzalez, Avelino, Pensky, Marianna, University of Central Florida
- Abstract / Description
-
In this dissertation, we focus on extracting and understanding semantically meaningful relationshipsbetween data items of various modalities; especially relations between images and naturallanguage. We explore the ideas and techniques to integrate such cross-media semantic relationsfor machine understanding of large heterogeneous datasets, made available through the expansionof the World Wide Web. The datasets collected from social media websites, news media outletsand blogging platforms...
Show moreIn this dissertation, we focus on extracting and understanding semantically meaningful relationshipsbetween data items of various modalities; especially relations between images and naturallanguage. We explore the ideas and techniques to integrate such cross-media semantic relationsfor machine understanding of large heterogeneous datasets, made available through the expansionof the World Wide Web. The datasets collected from social media websites, news media outletsand blogging platforms usually contain multiple modalities of data. Intelligent systems are needed to automatically make sense out of these datasets and present them in such a way that humans can find the relevant pieces of information or get a summary of the available material. Such systems have to process multiple modalities of data such as images, text, linguistic features, and structured data in reference to each other. For example, image and video search and retrieval engines are required to understand the relations between visual and textual data so that they can provide relevant answers in the form of images and videos to the users' queries presented in the form of text.We emphasize the automatic extraction of semantic topics or concepts from the data available in any form such as images, free-flowing text or metadata. These semantic concepts/topics become the basis of semantic relations across heterogeneous data types, e.g., visual and textual data. A classic problem involving image-text relations is the automatic generation of textual descriptions of images. This problem is the main focus of our work. In many cases, large amount of text is associated with images. Deep exploration of linguistic features of such text is required to fully utilize the semantic information encoded in it. A news dataset involving images and news articles is an example of this scenario. We devise frameworks for automatic news image description generation based on the semantic relations of images, as well as semantic understanding of linguistic features of the news articles.
Show less - Date Issued
- 2016
- Identifier
- CFE0006507, ucf:51401
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006507
- Title
- Data Representation in Machine Learning Methods with its Application to Compilation Optimization and Epitope Prediction.
- Creator
-
Sher, Yevgeniy, Zhang, Shaojie, Dechev, Damian, Leavens, Gary, Gonzalez, Avelino, Zhi, Degui, University of Central Florida
- Abstract / Description
-
In this dissertation we explore the application of machine learning algorithms to compilation phase order optimization, and epitope prediction. The common thread running through these two disparate domains is the type of data being dealt with. In both problem domains we are dealing with categorical data, with its representation playing a significant role in the performance of classification algorithms.We first present a neuroevolutionary approach which orders optimization phases to generate...
Show moreIn this dissertation we explore the application of machine learning algorithms to compilation phase order optimization, and epitope prediction. The common thread running through these two disparate domains is the type of data being dealt with. In both problem domains we are dealing with categorical data, with its representation playing a significant role in the performance of classification algorithms.We first present a neuroevolutionary approach which orders optimization phases to generate compiled programs with performance superior to those compiled using LLVM's -O3 optimization level. Performance improvements calculated as the speed of the compiled program's execution ranged from 27% for the ccbench program, to 40.8% for bzip2.This dissertation then explores the problem of data representation of 3D biological data, such as amino acids. A new approach for distributed representation of 3D biological data through the process of embedding is proposed and explored. Analogously to word embedding, we developed a system that uses atomic and residue coordinates to generate distributed representation for residues, which we call 3D Residue BioVectors. Preliminary results are presented which demonstrate that even the low dimensional 3D Residue BioVectors can be used to predict conformational epitopes and protein-protein interactions, with promising proficiency. The generation of such 3D BioVectors, and the proposed methodology, opens the door for substantial future improvements, and application domains.The dissertation then explores the problem domain of linear B-Cell epitope prediction. This problem domain deals with predicting epitopes based strictly on the protein sequence. We present the DRREP system, which demonstrates how an ensemble of shallow neural networks can be combined with string kernels and analytical learning algorithm to produce state of the art epitope prediction results. DRREP was tested on the SARS subsequence, the HIV, Pellequer, AntiJen datasets, and the standard SEQ194 test dataset. AUC improvements achieved over the state of the art ranged from 3% to 8%.Finally, we present the SEEP epitope classifier, which is a multi-resolution SMV ensemble based classifier which uses conjoint triad feature representation, and produces state of the art classification results. SEEP leverages the domain specific knowledge based protein sequence encoding developed within the protein-protein interaction research domain. Using an ensemble of multi-resolution SVMs, and a sliding window based pre and post processing pipeline, SEEP achieves an AUC of 91.2 on the standard SEQ194 test dataset, a 24% improvement over the state of the art.
Show less - Date Issued
- 2017
- Identifier
- CFE0006793, ucf:51829
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006793
- Title
- Modeling Learner Mood in Realtime through Biosensors for Intelligent Tutoring Improvements.
- Creator
-
Brawner, Keith, Gonzalez, Avelino, Boloni, Ladislau, Georgiopoulos, Michael, Proctor, Michael, Beidel, Deborah, University of Central Florida
- Abstract / Description
-
Computer-based instructors, just like their human counterparts, should monitor the emotional and cognitive states of their students in order to adapt instructional technique. Doing so requires a model of student state to be available at run time, but this has historically been difficult. Because people are different, generalized models have not been able to be validated. As a person's cognitive and affective state vary over time of day and seasonally, individualized models have had differing...
Show moreComputer-based instructors, just like their human counterparts, should monitor the emotional and cognitive states of their students in order to adapt instructional technique. Doing so requires a model of student state to be available at run time, but this has historically been difficult. Because people are different, generalized models have not been able to be validated. As a person's cognitive and affective state vary over time of day and seasonally, individualized models have had differing difficulties. The simultaneous creation and execution of an individualized model, in real time, represents the last option for modeling such cognitive and affective states. This dissertation presents and evaluates four differing techniques for the creation of cognitive and affective models that are created on-line and in real time for each individual user as alternatives to generalized models. Each of these techniques involves making predictions and modifications to the model in real time, addressing the real time datastream problems of infinite length, detection of new concepts, and responding to how concepts change over time. Additionally, with the knowledge that a user is physically present, this work investigates the contribution that the occasional direct user query can add to the overall quality of such models. The research described in this dissertation finds that the creation of a reasonable quality affective model is possible with an infinitesimal amount of time and without (")ground truth(") knowledge of the user, which is shown across three different emotional states. Creation of a cognitive model in the same fashion, however, was not possible via direct AI modeling, even with all of the (")ground truth(") information available, which is shown across four different cognitive states.
Show less - Date Issued
- 2013
- Identifier
- CFE0004822, ucf:49734
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004822