Current Search: Kauffman, Jeffrey (x)
View All Items
Pages
- Title
- Nondestructive Analysis of Advanced Aerospace Materials via Spectroscopy and Synchrotron Radiation.
- Creator
-
Manero, Albert, Raghavan, Seetha, Kauffman, Jeffrey, Gou, Jihua, University of Central Florida
- Abstract / Description
-
Advanced aerospace materials require extensive testing and characterization to anticipate and ensure their integrity under hostile environments. Characterization methods utilizing synchrotron X-Ray diffraction and spectroscopy can decrease the time required to determine an emerging material's readiness for application through intrinsic information on the material response and failure mechanisms. In this study, thermal barrier coating samples applicable to turbine blades of jet engines were...
Show moreAdvanced aerospace materials require extensive testing and characterization to anticipate and ensure their integrity under hostile environments. Characterization methods utilizing synchrotron X-Ray diffraction and spectroscopy can decrease the time required to determine an emerging material's readiness for application through intrinsic information on the material response and failure mechanisms. In this study, thermal barrier coating samples applicable to turbine blades of jet engines were studied using Raman and Photoluminescence spectroscopy as well as Synchrotron X-ray diffraction while Kevlar based fiber composites applicable to ballistic resistant armor were studied using Raman spectroscopy to investigate the mechanical state and corresponding damage and failure mechanisms. Piezospectroscopic studies on the stress state of the thermally grown oxide (TGO) within the thermal barrier coatings, on a hollow cylindrical specimen, provided results that indicate variations within the TGO. Comparison of measured photo-luminescence spectra of the specimen before and after long duration thermal aging showcases the development of the system and the initiation of micro-damage. Raman spectroscopy performed on Kevlar ballistic composites with nano-scale additives, presented insight into the additives' role in load transfer and damage propagation through a comparison of the shift in optical spectra to that of the pristine fibers. The results presented herein utilize changes in the measured emission from these non-destructive testing techniques to link the phenomena with material response. Techniques to optimize imaging and spectral collection are addressed as well. The findings will advance the use of the techniques in the development of aerospace materials, providing a more complete understanding of land and aircraft turbine blade coatings, and fiber composite response to complex loading.
Show less - Date Issued
- 2014
- Identifier
- CFE0005657, ucf:50195
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005657
- Title
- A study of Compressive Sensing for application to Structural Health Monitoring.
- Creator
-
Ganesan, Vaahini, Das, Tuhin, Kauffman, Jeffrey, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
One of the key areas that have attracted attention in the construction industry today is Structural Health Monitoring, more commonly known as SHM. It is a concept developed to monitor the quality and longevity of various engineering structures. The incorporation of such a system would help to continuously track health of the structure, indicate the occurrence/presence of any damage in real time and give us an idea of the number of useful years for the same. Being a recently conceived idea,...
Show moreOne of the key areas that have attracted attention in the construction industry today is Structural Health Monitoring, more commonly known as SHM. It is a concept developed to monitor the quality and longevity of various engineering structures. The incorporation of such a system would help to continuously track health of the structure, indicate the occurrence/presence of any damage in real time and give us an idea of the number of useful years for the same. Being a recently conceived idea, the state of the art technique in the field is straight forward - populating a given structure with sensors and extracting information from them. In this regard, instrumenting with too many sensors may be inefficient as this could lead to superfluous data that is expensive to capture and process.This research aims to explore an alternate SHM technique that optimizes the data acquisition process by eliminating the amount of redundant data that is sensed and uses this sufficient data to detect and locate the fault present in the structure. Efficient data acquisition requires a mechanism that senses just the necessary amount of data for detection and location of fault. For this reason Compressive Sensing (CS) is explored as a plausible idea. CS claims that signals can be reconstructed from what was previously believed to be incomplete information by Shannon's theorem, taking only a small amount of random and linear non - adaptive measurements. As responses of many physical systems contain a finite basis, CS exploits this feature and determines the sparse solution instead of the traditional least - squares type solution. As a first step, CS is demonstrated by successfully recovering the frequency components of a simple sinusoid. Next, the question of how CS compares with the conventional Fourier transform is analyzed. For this, recovery of temporal frequencies and signal reconstruction is performed using the same number of samples for both the approaches and the errors are compared. On the other hand, the FT error is gradually minimized to match that of CS by increasing the number of regularly placed samples. Once the advantages are established, feasibility of using CS to detect damage in a single degree of freedom system is tested under unforced and forced conditions. In the former scenario, damage is indicated when there is a change in natural frequency of vibration of the system after an impact. In the latter, the system is excited harmonically and damage is detected by a change in amplitude of the system's vibration. As systems in real world applications are predominantly multi-DOF, CS is tested on a 2-DOF system excited with a harmonic forcing. Here again, damage detection is achieved by observing the change in the amplitude of vibration of the system. In order to employ CS for detecting either a change in frequency or amplitude of vibration of a structure subjected to realistic forcing conditions, it would be prudent to explore the reconstruction of a signal which contains multiple frequencies. This is accomplished using CS on a chirp signal.Damage detection is clearly a spatio-temporal problem. Hence it is important to additionally explore the extension of CS to spatial reconstruction. For this reason, mode shape reconstruction of a beam with standard boundary conditions is performed and validated with standard/analytical results from literature. As the final step, the operation deflection shapes (ODS) are reconstructed for a simply supported beam using CS to establish that it is indeed a plausible approach for a less expensive SHM. While experimenting with the idea of spatio-temporal domain, the mode shape as well as the ODS of the given beam are examined under two conditions - undamaged and damaged. Damage in the beam is simulated as a decrease in the stiffness coefficient over a certain number of elements. Although the range of modes to be examined heavily depends on the structure in question, literature suggests that for most practical applications, lower modes are more dominant in indicating damage. For ODS on the other hand, damage is indicated by observing the shift in the recovered spatial frequencies and it is confirmed by the reconstructed response.
Show less - Date Issued
- 2014
- Identifier
- CFE0005334, ucf:50520
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005334
- Title
- Energy Harvesting toward the Vibration Reduction of Turbomachinery Blades via Resonance Frequency Detuning.
- Creator
-
Hynds, Taylor, Kauffman, Jeffrey, Das, Tuhin, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
Piezoelectric-based energy harvesting devices provide an attractive approach to powering remote devices as ambient mechanical energy from vibrations is converted to electrical energy. These devices have numerous potential applications, including actuation, sensing, structural health monitoring, and vibration control -- the latter of which is of particular interest here. This work seeks to develop an understanding of energy harvesting behavior within the framework of a semi-active technique...
Show morePiezoelectric-based energy harvesting devices provide an attractive approach to powering remote devices as ambient mechanical energy from vibrations is converted to electrical energy. These devices have numerous potential applications, including actuation, sensing, structural health monitoring, and vibration control -- the latter of which is of particular interest here. This work seeks to develop an understanding of energy harvesting behavior within the framework of a semi-active technique for reducing turbomachinery blade vibrations, namely resonance frequency detuning. In contrast with the bulk of energy harvesting research, this effort is not focused on maximizing the power output of the system, but rather providing the low power levels required by resonance frequency detuning. The demands of this technique dictate that harvesting conditions will be far from optimal, requiring that many common assumptions in conventional energy harvesting research be relaxed.Resonance frequency detuning has been proposed as a result of recent advances in turbomachinery blade design that have, while improving their overall efficiency, led to significantly reduced damping and thus large vibratory stresses. This technique uses piezoelectric materials to control the stiffness, and thus resonance frequency, of a blade as the excitation frequency sweeps through resonance. By detuning a structure's resonance frequency from that of the excitation, the overall peak response can be reduced, delaying high cycle fatigue and extending the lifetime of a blade. Additional benefits include reduced weight, drag, and noise levels as reduced vibratory stresses allow for increasingly light blade construction.As resonance frequency detuning is most effective when the stiffness states are well separated, it is necessary to harvested at nominally open- and short-circuit states, corresponding to the largest separation in stiffness states. This presents a problem from a harvesting standpoint however, as open- and short-circuit correspond to zero charge displacement and zero voltage, respectively, and thus there is no energy flow. It is, then, desirable to operate as near these conditions as possible while still harvesting sufficient energy to provide the power for state-switching. In this research a metric is developed to study the relationship between harvested power and structural stiffness, and a key result is that appreciable energy can be harvested far from the usual optimal conditions in a typical energy harvesting approach. Indeed, sufficient energy is available to power the on-blade control while essentially maintaining the desired stiffness states for detuning. Furthermore, it is shown that the optimal switch in the control law for resonance frequency detuning may be triggered by a threshold harvested power, requiring minimal on-blade processing. This is an attractive idea for implementing a vibration control system on-blade, as size limitations encourage removing the need for additional sensing and signal processing hardware.
Show less - Date Issued
- 2015
- Identifier
- CFE0005811, ucf:50039
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005811
- Title
- An Introductory Study of The Dynamics of Autorotation for Wind Energy Harvesting.
- Creator
-
Salih, Bilal, Das, Tuhin, Kassab, Alain, Kauffman, Jeffrey, University of Central Florida
- Abstract / Description
-
Wind turbines have been used for decades to harvest wind energy. They are suitable only to work on close to ground, and have several drawbacks that are related to the availability of the wind and the amount of extracted power compared with the cost of construction. On the other hand, there is an abundant wind power that is available at high altitudes. The wind jet streams at high elevations 8 ? 12 kms are pervasive and persistent, and can potentially produce immense wind energy. Even at...
Show moreWind turbines have been used for decades to harvest wind energy. They are suitable only to work on close to ground, and have several drawbacks that are related to the availability of the wind and the amount of extracted power compared with the cost of construction. On the other hand, there is an abundant wind power that is available at high altitudes. The wind jet streams at high elevations 8 ? 12 kms are pervasive and persistent, and can potentially produce immense wind energy. Even at moderate elevations of 4 ? 5 kms, wind power densities are much higher than on ground and more consistent. Consequently, in this thesis research, we investigate the topic of harvesting energy from high altitudes. First, we provide a comprehensive review of two existing theoretical methods that are proposed for airborne wind energy harvesting, the tethered airfoil, and the static autogyro. The latter approach has inherent advantages that warrant further investigation. Autorotation is a well-known phenomenon where a rotor sustains its angular velocity and maintains significant lift in the presence of strong aerodynamic forces and torques generated by interaction with a strong wind field. Autorotation has been researched in the context of free descent of helicopters but has not been considered for energy harvesting. Existing models have mainly focused on statics analysis. In this research, we propose a simple dynamic model of the Autogyro, with the goal of ultimately realizing an Autorotation Energy System (AES). The focus of our work is to provide a preliminary dynamic analysis of autorotation, which is largely absent in current literature, to explore the possibility of using autorotation for designing a multipurpose system that can simultaneously fly at high altitudes and generate energy from the wind. The proposed preliminary dynamic model is used to generate a simulation platform, which is used to explore the autogyros rudimentary maneuvers. Extensive simulation results are provided to evaluate the dynamic performance of AES. Energy harvesting analyses and results are also presented. It is expected that the results will guide the choice of actuations and control that will be necessary for generating combined autorotation and powered flights that would be net energy generating or energy efficient. The research will be relevant for both tethered and untethered AES and could also be incorporated into multi-rotor based UAVs such as quadrotors.
Show less - Date Issued
- 2014
- Identifier
- CFE0005245, ucf:50597
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005245
- Title
- Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems.
- Creator
-
Groves, Curtis, Kassab, Alain, Das, Tuhin, Kauffman, Jeffrey, Moore, Brian, University of Central Florida
- Abstract / Description
-
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data...
Show moreSpacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional (")validation by test only(") mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in (")Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations("). This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Show less - Date Issued
- 2014
- Identifier
- CFE0005174, ucf:50662
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005174
- Title
- Navigation of an Autonomous Differential Drive Robot for Field Scouting in Semi-structured Environments.
- Creator
-
Freese, Douglas, Xu, Yunjun, Lin, Kuo-Chi, Kauffman, Jeffrey L., Behal, Aman, University of Central Florida
- Abstract / Description
-
In recent years, the interests of introducing autonomous robots by growers into agriculture fields are rejuvenated due to the ever-increasing labor cost and the recent declining numbers of seasonal workers. The utilization of customized, autonomous agricultural robots has a profound impact on future orchard operations by providing low cost, meticulous inspection. Different sensors have been proven proficient in agrarian navigation including the likes of GPS, inertial, magnetic, rotary...
Show moreIn recent years, the interests of introducing autonomous robots by growers into agriculture fields are rejuvenated due to the ever-increasing labor cost and the recent declining numbers of seasonal workers. The utilization of customized, autonomous agricultural robots has a profound impact on future orchard operations by providing low cost, meticulous inspection. Different sensors have been proven proficient in agrarian navigation including the likes of GPS, inertial, magnetic, rotary encoding, time of flight as well as vision. To compensate for anticipated disturbances, variances and constraints contingent to the outdoor semi-structured environment, a differential style drive vehicle will be implemented as an easily controllable system to conduct tasks such as imaging and sampling.In order to verify the motion control of a robot, custom-designed for strawberry fields, the task is separated into multiple phases to manage the over-bed and cross-bed operation needs. In particular, during the cross-bed segment an elevated strawberry bed will provide distance references utilized in a logic filter and tuned PID algorithm for safe and efficient travel. Due to the significant sources of uncertainty such as wheel slip and the vehicle model, nonlinear robust controllers are designed for the cross-bed motion, purely relying on vision feedback. A simple image filter algorithm was developed for strawberry row detection, in which pixels corresponding to the bed center will be tracked while the vehicle is in controlled motion. This incorporated derivation and formulation of a bounded uncertainty parameter that will be employed in the nonlinear control. Simulation of the entire system was subsequently completed to ensure the control capability before successful validation in multiple commercial farms. It is anticipated that with the developed algorithms the authentication of fully autonomous robotic systems functioning in agricultural crops will provide heightened efficiency of needed costly services; scouting, disease detection, collection, and distribution.
Show less - Date Issued
- 2018
- Identifier
- CFE0007401, ucf:52743
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007401
- Title
- Flutter Stability of Shrouded Turbomachinery Cascades with Nonlinear Frictional Damping.
- Creator
-
Torkaman, Alex, Kauffman, Jeffrey L., Kapat, Jayanta, Raghavan, Seetha, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
Prediction of flutter in shrouded turbomachinery cascades is difficult due to i) coupling of aerodynamic drivers and structural dynamics of the cascade through shrouds, and ii) presence of nonlinear dry friction damping as a result of relative motion between adjacent shrouds. An analytical framework is developed in this dissertation to determine flutter stability of shrouded cascades with consideration of friction damping. This framework is an extension to the well-established energy method,...
Show morePrediction of flutter in shrouded turbomachinery cascades is difficult due to i) coupling of aerodynamic drivers and structural dynamics of the cascade through shrouds, and ii) presence of nonlinear dry friction damping as a result of relative motion between adjacent shrouds. An analytical framework is developed in this dissertation to determine flutter stability of shrouded cascades with consideration of friction damping. This framework is an extension to the well-established energy method, and it includes all contributing factors affecting stability of the cascade such as aerodynamic excitation and the stabilizing effects of dry friction damping caused by nonlinear contact forces between adjacent blades. This framework is developed to address a shortcoming in current analytical methods for flutter assessment in the industry. The influence of dry friction damping is typically not included due to complexity associated with nonlinearity, leading to uncertainty about exact threshold of flutter occurrence. The new analytical framework developed in this dissertation will increase the accuracy of flutter prediction method that is used for design and optimization of gas turbines.A hybrid time-frequency-time domain solution method is developed to solve aeroelastic equations of motion in both fluid and structural domains. Solution steps and their sequencing are optimized for computational efficiency with large scale realistic models and analytical accuracy in determining nonlinear friction force. Information exchange between different domains is used to couple aerodynamic and structural solutions together for a comprehensive and accurate analysis of shrouded cascade flutter problem in presence of nonlinear friction.Example application to a shrouded IGT blade shows that the influence of nonlinear friction damping in flutter suppression of an aerodynamically unstable cascade is significant. Comparison with engine test data shows that at observed vibration amplitudes in operation friction damping is sufficient to overcome aerodynamic excitation of this aerodynamically unstable cascade, resulting in overall cascade stability.
Show less - Date Issued
- 2018
- Identifier
- CFE0007379, ucf:52077
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007379
- Title
- Aeroelastic Investigation of a Circumferentially Varying Tip Gap in an Axial Compressor Rotor.
- Creator
-
Canon, Ornan, Kapat, Jayanta, Vasu Sumathi, Subith, Kauffman, Jeffrey, Mackie, Kevin, Kiesow, Hans-jurgen, University of Central Florida
- Abstract / Description
-
The tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially...
Show moreThe tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially varying tip gap, such as that produced by casing ovalization.For this project, the casing ovalization of an industrial gas turbine compressor was modeled using a frequency domain solver, without the need for a full wheel model. Both the vibratory and aerodynamic calculations were conducted in order to assess the aeroelastic response of the blade, as well as the aerodynamic impact. Engine test data was implemented in order to model realistic levels of casing ovalization and to calibrate the analytical models. Comparisons to a well-established method are also conducted to further calibrate the models. The calculations showed that for the gap variations imposed, the instantaneous effects aligned with expectations. However, the variation from small and large gaps had a canceling effect on each other over the cycle of oscillation around the engine.
Show less - Date Issued
- 2016
- Identifier
- CFE0006682, ucf:51926
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006682
- Title
- Seismic Response of Moment Resisting Frames Coupled with Rocking Walls.
- Creator
-
Aghagholizadeh, Mehrdad, Makris, Nicos, Catbas, Necati, Mackie, Kevin, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
This study investigates the inelastic response of yielding structures coupled with rocking walls. This topic is of major significance in the design of tall moment-resisting buildings, since during recent major earthquakes several tall, moment-resisting frames that had been designed in an accordance to the existing seismic code provisions, exhibited a weak-story failure. Utilization of this structural system can help reducing maximum story drifts, prevents weak story failure and minimize...
Show moreThis study investigates the inelastic response of yielding structures coupled with rocking walls. This topic is of major significance in the design of tall moment-resisting buildings, since during recent major earthquakes several tall, moment-resisting frames that had been designed in an accordance to the existing seismic code provisions, exhibited a weak-story failure. Utilization of this structural system can help reducing maximum story drifts, prevents weak story failure and minimize residual deformation of the structure. This study first examines different configurations of both stepping rocking walls and pinned rocking walls that have been reported in the literature.Next, effect of additional vertical tendons or vertical damping devices in maximum response of the system is investigated. This research first derives the nonlinear equations of motion of a yieldingoscillator coupled with a rocking wall and the dependability of the one-degree of freedom idealization is validated against the nonlinear time-history response analysis of a 9-story moment-resisting frame coupled with a rocking wall. This research finally concludes that, stepping wall suppresses peak and permanent displacements, with the heavier wall being most effective. In contrast, the pinned rocking wall increases in general the peak inelastic displacements and the permanent displacements. While, the coupling of weak building frames with rocking walls is an efficient strategy that controls inelastic deformations by enforcing a uniform interstory-drift distribution, therefore, avoiding mid-story failures, the study shows that even for medium-rise buildings the effect of vertical tendons on the inelastic structural response is marginal, except for increasing the vertical reactions at the pivoting points of the rocking wall. Additionally, The SDOF idealization presented in this study compares satisfactory with finite-element analysis of a 9-story steel SAC building coupled with a stepping rocking wall; therefore, the SDOF idealization can be used with confidence for preliminary analysis and design.
Show less - Date Issued
- 2018
- Identifier
- CFE0007301, ucf:52157
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007301
- Title
- Load Estimation, Structural Identification and Human Comfort Assessment of Flexible Structures.
- Creator
-
Celik, Ozan, Catbas, Necati, Yun, Hae-Bum, Makris, Nicos, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
Stadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable...
Show moreStadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable load quantification, a deeper understanding of structural response, generation of simple and efficient human-structure interaction models and new measurement and assessment criteria for acceptable vibration levels. In contribution to these possible improvements, this dissertation taps into three specific areas: the load quantification of lively individuals or crowds, the structural identification under non-stationary and narrowband disturbances and the measurement of excessive vibration levels for human comfort. For load quantification, a computer vision based approach capable of tracking both individual and crowd motion is used. For structural identification, a noise-assisted Multivariate Empirical Mode Decomposition (MEMD) algorithm is incorporated into the operational modal analysis. The measurement of excessive vibration levels and the assessment of human comfort are accomplished through computer vision based human and object tracking, which provides a more convenient means for measurement and computation. All the proposed methods are tested in the laboratory environment utilizing a grandstand simulator and in the field on a pedestrian bridge and on a football stadium. Findings and interpretations from the experimental results are presented. The dissertation is concluded by highlighting the critical findings and the possible future work that may be conducted.
Show less - Date Issued
- 2017
- Identifier
- CFE0006863, ucf:51752
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006863
- Title
- Structure-preserving finite difference methods for linearly damped differential equations.
- Creator
-
Bhatt, Ashish, Moore, Brian, Choudhury, Sudipto, Gurel, Basak, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
Differential equations (DEs) model a variety of physical phenomena in science and engineering. Many physical phenomena involve conservative or dissipative forces, which manifest themselves as qualitative properties of DEs that govern these phenomena. Since only a few and simplistic models are known to have exact solutions, approximate solution techniques, such as numerical integration, are used to reveal important insights about solution behavior and properties of these models. Numerical...
Show moreDifferential equations (DEs) model a variety of physical phenomena in science and engineering. Many physical phenomena involve conservative or dissipative forces, which manifest themselves as qualitative properties of DEs that govern these phenomena. Since only a few and simplistic models are known to have exact solutions, approximate solution techniques, such as numerical integration, are used to reveal important insights about solution behavior and properties of these models. Numerical integrators generally result in undesirable quantitative and qualitative errors . Standard numerical integrators aim to reduce quantitative errors, whereas geometric (numerical) integrators aim to reduce or eliminate qualitative errors, as well, in order to improve the accuracy of numerical solutions. It is now widely recognized that geometric (or structure-preserving) integrators are advantageous compared to non-geometric integrators for DEs, especially for long time integration.Geometric integrators for conservative DEs have been proposed, analyzed, and investigated extensively in the literature. The motif of this thesis is to extend the idea of structure preservation to linearly damped DEs. More specifically, we develop, analyze, and implement geometric integrators for linearly damped ordinary and partial differential equations (ODEs and PDEs) that possess conformal invariants, which are qualitative properties that decay exponentially along any solution of the DE as the system evolves over time. In particular, we derive restrictions on the coefficient functions of exponential Runge-Kutta (ERK) numerical methods for preservation of certain conformal invariants of linearly damped ODEs. An important class of these methods is shown to preserve the damping rate of solutions of damped linear ODEs. Linearly stability and order of accuracy for some specific cases of ERK methods are investigated. Geometric integrators for PDEs are designed using structure-preserving ERK methods in space, time, or both. These integrators for PDEs are also shown to preserve additional structure in certain special cases. Numerical experiments illustrate higher order accuracy and structure preservation properties of various ERK based methods, demonstrating clear advantages over non-structure-preserving methods, as well as usefulness for solving a wide range of DEs.
Show less - Date Issued
- 2016
- Identifier
- CFE0006832, ucf:51763
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006832
- Title
- Chaotification as a Means of Broadband Vibration Energy Harvesting with Piezoelectric Materials.
- Creator
-
Geiyer, Daniel, Kauffman, Jeffrey L., Das, Tuhin, Moslehy, Faissal, Shivamoggi, Bhimsen, University of Central Florida
- Abstract / Description
-
Computing advances and component miniaturization in circuits coupled with stagnating battery technology have fueled growth in the development of high efficiency energy harvesters. Vibration-to-electricity energy harvesting techniques have been investigated extensively for use in sensors embedded in structures or in hard-to-reach locations like turbomachinery, surgical implants, and GPS animal trackers. Piezoelectric materials are commonly used in harvesters as they possess the ability to...
Show moreComputing advances and component miniaturization in circuits coupled with stagnating battery technology have fueled growth in the development of high efficiency energy harvesters. Vibration-to-electricity energy harvesting techniques have been investigated extensively for use in sensors embedded in structures or in hard-to-reach locations like turbomachinery, surgical implants, and GPS animal trackers. Piezoelectric materials are commonly used in harvesters as they possess the ability to convert strain energy directly into electrical energy and can work concurrently as actuators for damping applications. The prototypical harvesting system places two piezoelectric patches on both sides of the location of maximum strain on a cantilever beam. While efficient around resonance, performance drops dramatically should the driving frequency drift away from the beam's fundamental frequency. To date, researchers have worked to improve harvesting capability by modifying material properties, using alternative geometries, creating more efficient harvesting circuits, and inducing nonlinearities. These techniques have partially mitigated the resonance excitation dependence for vibration-based harvesting, but much work remains.In this dissertation, an induced nonlinearity destabilizes a central equilibrium point, resulting in a bistable potential function governing the cantilever beam system. Depending on the environment, multiple stable solutions are possible and can coexist. Typically, researchers neglect chaos and assume that with enough energy in the ambient environment, large displacement trajectories can exist uniquely. When subjected to disturbances a system can fall to coexistent lower energy solutions including aperiodic, chaotic oscillations. Treating chaotic motion as a desirable behavior of the system allows frequency content away from resonance to produce motion about a theoretically infinite number of unstable periodic orbits that can be stabilized through control. The extreme sensitivity to initial conditions exhibited by chaotic systems paired with a pole placement control strategy pioneered by Ott, Grebogi, and Yorke permits small perturbations to an accessible system parameter to alter the system response dramatically. Periodic perturbation of the system trajectories in the vicinity of isolated unstable orbit points can therefore stabilize low-energy chaotic oscillations onto larger trajectory orbits more suitable for energy harvesting.The periodic perturbation-based control method rids the need of a system model. It only requires discrete displacement, velocity, or voltage time series data of the chaotic system driven by harmonic excitation. While the analysis techniques are not fundamentally limited to harmonic excitation, this condition permits the use of standard discrete mapping techniques to isolate periodic orbits of interest. Local linear model fits characterize the orbit and admit the necessary control perturbation calculations from the time series data.This work discusses the feasibility of such a method for vibration energy harvesting, displays stable solutions under various control algorithms, and implements a hybrid bench-top experiment using MATLAB and LabVIEW FPGA. In conclusion, this work discusses the limitations for wide-scale use and addresses areas of further work; both with respect to chaotic energy harvesting and parallel advances required within the field as a whole.
Show less - Date Issued
- 2017
- Identifier
- CFE0006878, ucf:51718
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006878
- Title
- Timoshenko Beam Viscous Damping Model for Spacecraft Cabling Dynamics.
- Creator
-
McPherson, Brandi, Kauffman, Jeffrey L., Bai, Yuanli, Song, Sang-Eun, University of Central Florida
- Abstract / Description
-
With the increasing data handling and power requirements of today's spacecraft, accurately modeling the effects of cabling on spacecraft structural dynamics has become an increasingly important part of the design process. During testing, spacecraft cabling produces a damping effect on the system dynamics; however, current models often overpredict this response in higher frequency modes and produce unrealistic damping values. Previous models incorporated structural and viscous damping terms...
Show moreWith the increasing data handling and power requirements of today's spacecraft, accurately modeling the effects of cabling on spacecraft structural dynamics has become an increasingly important part of the design process. During testing, spacecraft cabling produces a damping effect on the system dynamics; however, current models often overpredict this response in higher frequency modes and produce unrealistic damping values. Previous models incorporated structural and viscous damping terms into Euler-Bernoulli and shear beams; this thesis presents a viscous damping model for Timoshenko beams that can accurately capture the effects of both spacecraft wiring and harnesses during the design phase. Damping in built-up structures shows a weak frequency-dependence; therefore, it is of interest to develop a combination of damping terms and coefficients that provide approximately frequency-independent modal damping. Where previous work included a rotation-based damping term to Euler-Bernoulli beam equations to produce frequency-independent damping, this thesis includes higher-order derivative damping terms to characterize their motion. Because Timoshenko beams account for the effects of both transverse shear and rotary inertia, it is of interest to characterize the damping coefficients using these parameters. Finally, deformed beam shapes were studied to further characterize each damping term as a physical dissipative mechanism.
Show less - Date Issued
- 2017
- Identifier
- CFE0006764, ucf:51851
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006764
- Title
- bio-inspired attitude control of micro air vehicles using rich information from airflow sensors.
- Creator
-
Shen, He, Xu, Yunjun, Lin, Kuo-Chi, Kauffman, Jeffrey, An, Linan, University of Central Florida
- Abstract / Description
-
Biological phenomena found in nature can be learned and customized to obtain innovative engineering solutions. In recent years, biologists found that birds and bats use their mechanoreceptors to sense the airflow information and use this information directly to achieve their agile flight performance. Inspired by this phenomenon, an attitude control system for micro air vehicles using rich amount of airflow sensor information is proposed, designed and tested. The dissertation discusses our...
Show moreBiological phenomena found in nature can be learned and customized to obtain innovative engineering solutions. In recent years, biologists found that birds and bats use their mechanoreceptors to sense the airflow information and use this information directly to achieve their agile flight performance. Inspired by this phenomenon, an attitude control system for micro air vehicles using rich amount of airflow sensor information is proposed, designed and tested. The dissertation discusses our research findings on this topic. First, we quantified the errors between the calculated and measured lift and moment profiles using a limited number of micro pressure sensors over a straight wing. Then, we designed a robust pitching controller using 20 micro pressure sensors and tested the closed-loop performance in a simulated environment. Additionally, a straight wing was designed for the pressure sensor based pitching control with twelve pressure sensors, which was then tested in our low-speed wind tunnel. The closed-loop pitching control system can track the commanded angle of attack with a rising time around two seconds and an overshoot around 10%. Third, we extended the idea to the three-axis attitude control scenarios, where both of the pressure and shear stress information are considered in the simulation. Finally, a fault tolerant controller with a guaranteed asymptotically stability is proposed to deal with sensor failures and calculation errors. The results show that the proposed fault tolerant controller is robust, adaptive, and can guarantee an asymptotically stable performance even in case that 50% of the airflow sensors fail in flight.
Show less - Date Issued
- 2014
- Identifier
- CFE0005711, ucf:50150
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005711
- Title
- Bio-Inspired Visual Servo Control of a Picking Mechanism in an Agricultural Ground Robot.
- Creator
-
Defterli, Sinem, Xu, Yunjun, Kauffman, Jeffrey L., Lin, Kuo-Chi, Song, Sang-Eun, Zheng, Qipeng, University of Central Florida
- Abstract / Description
-
For a recently constructed disease detection agricultural ground robot, the segregation of unhealthy leaves fromstrawberry plants is a major task of the robot's manipulation subsystem in field operations. In this dissertation, the motion planning of a custom-designedpicking mechanism in the ground robot's subsystem is studied in two sections. First, a set of analytical, suboptimal semi-analyticaland numerical algorithms are studied to solve the inverse kinematics problem of the handling...
Show moreFor a recently constructed disease detection agricultural ground robot, the segregation of unhealthy leaves fromstrawberry plants is a major task of the robot's manipulation subsystem in field operations. In this dissertation, the motion planning of a custom-designedpicking mechanism in the ground robot's subsystem is studied in two sections. First, a set of analytical, suboptimal semi-analyticaland numerical algorithms are studied to solve the inverse kinematics problem of the handling mechanism in firmcircumstances. These premeditated approaches are built on the computation of the joint variables by an identified 3Dposition data of the target leaf only. The outcomes of the three solution algorithms are evaluated in terms of the performanceindexes of energy change and the CPU time cost. The resultant postures of the mechanism for different target pointlocations are observed both in simulations and the hardware experiments with each IK solution. Secondly, after the manipulation task of the mechanism via the proposed inverse kinematicalgorithms is performed, some compensation may be needed due to the sudden and unpredicted deviation of the targetposition under field conditions.For the purpose of finding optimal joint values under certain constraints, a trajectory optimization problem in image-based visual servoing method via the camera-in-handconfiguration is initiated when the end-effector is in the close proximity of the target leaf. In this part of the study, a bio-inspired trajectory optimization problem in image-basedvisual servoing method is constructed based on the mathematical model derived from the prey-predatorrelationships in nature. In this biological phenomenon, the predator constructs its path in a certain subspace whilecatching the prey. When this motion strategy is applied to trajectory optimization problems, it causes a significantreduce in the computation cost since it finds the optimum solution in a certain manifold. The performance of the introducedbio-inspired trajectory optimization in visual servoing is validated with the hardware experiments both in laboratory settings and in fieldconditions.
Show less - Date Issued
- 2018
- Identifier
- CFE0007170, ucf:52247
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007170