Current Search: Lee, Woo Hyoung (x)
View All Items
Pages
- Title
- DEVELOPMENT AND APPLICATION OF MICROELECTRODES TO STUDY IN SITU DISINFECTANT LOSS AND CORROSION ON METAL SURFACE.
- Creator
-
Ma, Xiangmeng, Lee, Woo Hyoung, Duranceau, Steven, Sadmani, A H M Anwar, Chumbimuni Torres, Karin, University of Central Florida
- Abstract / Description
-
The primary objective of this research was to develop, fabricate, evaluate and utilize microelectrodes to metal coupons in artificial water system. In the brass experiment, it presented profiles of direct measurements of free chlorine/monochloramine, oxygen and pH to brass and cement based coupons. In monochloraminated water, brass showed a much faster corrosion process under observation. Profiles showed a less monochloramine consumption with as high as 7% greater oxygen utilization comparing...
Show moreThe primary objective of this research was to develop, fabricate, evaluate and utilize microelectrodes to metal coupons in artificial water system. In the brass experiment, it presented profiles of direct measurements of free chlorine/monochloramine, oxygen and pH to brass and cement based coupons. In monochloraminated water, brass showed a much faster corrosion process under observation. Profiles showed a less monochloramine consumption with as high as 7% greater oxygen utilization comparing to the brass in free chlorine solution, reflecting oxygen could be a major part of the corrosion initiation process. While cement showed less reactive characteristics to disinfectants and oxygen compared to the brass profiles, however, pH showed a significant rise for cement coupon under monochloramine condition. In galvanic experiment, the developed lead micro-ISE (100 (&)#181;m tip diameter) showed excellent performance toward soluble lead (Pb2+) with the sensitivity of 22.2 (&)#177; 0.5 mV decade-1 and limit of detection (LOD) of 1.22(&)#215;10-6 M (0.25 mg L-1). The response time was less than 10 seconds with a working pH range of 2.0 (-) 7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface over time. Combined with two-dimensional (2D) pH map, this work clearly demonstrated that lead leaching at the metal surface is non-uniform and lower surface pH leads to higher lead leaching from the surface. Once significant pH variation (?pH: 6.0) was developed across brass-lead joint coupon, even a small pH change (?pH: 0.6) within the Pb/Sn alloy resulted in 4 times different surface lead concentrations (42.93 vs. 11.61 mg L-1) and 5 times different fluxes (18.5(&)#215;10-6 vs. 3.5(&)#215;10-6 mg cm-2 s-1). Continuous surface lead leaching monitoring and surface characterization found that free chlorine is the primary contributor to lead leaching.
Show less - Date Issued
- 2017
- Identifier
- CFE0007289, ucf:52165
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007289
- Title
- Investigating Novel Water Treatment Methods and Monitoring Techniques for Sulfide-Laden Groundwater Supplies.
- Creator
-
Yoakum, Benjamin, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Moore, Sean, University of Central Florida
- Abstract / Description
-
This dissertation reports on research related to novel water treatment and monitoring techniques for sulfide-laden groundwater supplies. The dissertation is divided into several chapters with four core chapters focused on investigations studying a novel water treatment method or monitoring technique. The first investigation assessed the efficacy of multi-pass spray aeration treatment to remove trihalomethanes (THMs) and to reduce the total THM formation potential (TTHMFP) of an aerated water...
Show moreThis dissertation reports on research related to novel water treatment and monitoring techniques for sulfide-laden groundwater supplies. The dissertation is divided into several chapters with four core chapters focused on investigations studying a novel water treatment method or monitoring technique. The first investigation assessed the efficacy of multi-pass spray aeration treatment to remove trihalomethanes (THMs) and to reduce the total THM formation potential (TTHMFP) of an aerated water column post-aeration. A recirculating spray aeration pilot unit was constructed to make this assessment. To assess the effect of multi-pass spray aeration on the TTHMFP, water was recirculated through a fabricated spray nozzle for various lengths of time. Results showed that multi-pass spray aeration can remove chloroform, dichlorobromomethane, dibromochloromethane and bromoform to below detection levels ((<) 0.7 ppb) for the waters investigated. Additionally, spray aeration reduced the TTHMFP of chlorinated water. Results suggest multi-pass spray aeration may be a viable treatment option for some bromide container waters. Results also indicate that multi-pass spray aeration removes bromide from the bulk water in the form of organically bound volatile compounds.The second investigation assessed the efficacy of using pre-existing tray aeration infrastructure to comply with disinfection by-product (DBP) regulations. To assess the efficacy of tray aerators to reduce the concentration TTHMs a pilot tray aerator was constructed. Results showed that after five tray passes (each pass consisting of water being passed over five trays) the concentration of TTHMs was below the detection limit ((<) 0.7 ppb) for the water investigated. To assess the efficacy of tray aeration at full-scale, a water treatment plant and the distribution system it serves were monitored for eight months. Results showed an approximate 40 ppb reduction in the TTHM concentration at two on-site monitoring locations and the one off-site monitoring location (initial concentrations being approximately 54 ppb, 60 ppb and 73 ppb, respectively). Results suggest that the utility managing the full-scale system could comply with DBP regulations by using the pre-existing tray aeration infrastructure to reduce formed THMs on-site where regulated haloacetic acids are not predominant.The third investigation assessed the efficacy of using biological activated carbon (BAC) to remove disinfection by-product precursor matter to comply with DBP regulations. To research this method, a pilot scale BAC filter was operated for three independent test runs. In addition, two full-scale WTPs using BAC were monitored over time. Results showed an approximate 40 percent removal of dissolved organic carbon (DOC) during the three pilot runs and an approximate 55 percent removal of DOC during full-scale monitoring. Results showed that the reduction in DOC reduced the TTHMFP of BAC treated water. Results suggest that BAC treatment could be a viable treatment option to comply with DBP regulations in the sulfide-laden water studied.The fourth investigation assessed the suitability of oxidation reduction potential (ORP) to monitor the effectiveness of an oxidizing media filter used to remove sulfur from a sulfide-laden groundwater. Results showed that ORP was more useful as a measurement technique as compared to free chlorine residual when assessing filter bed health and regeneration effectiveness. It was determined that when the ORP measurement taken from within the oxidative media layer was below 500 mV, the filter bed was not providing treatment, and manganese could be released. Results showed a significant increase in turbidity ((>) 2 NTU) and total manganese ((>) 0.05 mg/L) occurred when the ORP within the filter bed dropped below 400 mV. More frequent cycling of the filters was found to be an effective treatment option to maintain ORP values above an identified 400 mV operational threshold.
Show less - Date Issued
- 2017
- Identifier
- CFE0007141, ucf:52317
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007141
- Title
- Forward Osmosis for Algae Dewatering and Electrical Field-driven Membrane Fouling Mitigation.
- Creator
-
Munshi, Faris, Lee, Woo Hyoung, Duranceau, Steven, Sadmani, A H M Anwar, Chumbimuni Torres, Karin, University of Central Florida
- Abstract / Description
-
Efficient and low-energy microalgae harvesting is essential for sustainable biofuel production. Forward osmosis (FO) can provide a potential alternative for algae separation with low energy consumption by using osmotic pressure. In this study, an aquaporin-based polyethersulfone (PES) membrane was evaluated for algae dewatering using FO with three different types of draw solutions (DSs: NaCl, KCl and NH4Cl), and under different cross flow velocities (CFVs). 81% of algae dewatering was...
Show moreEfficient and low-energy microalgae harvesting is essential for sustainable biofuel production. Forward osmosis (FO) can provide a potential alternative for algae separation with low energy consumption by using osmotic pressure. In this study, an aquaporin-based polyethersulfone (PES) membrane was evaluated for algae dewatering using FO with three different types of draw solutions (DSs: NaCl, KCl and NH4Cl), and under different cross flow velocities (CFVs). 81% of algae dewatering was achieved with a 29% flux drop. Among three different DSs, although NH4Cl was the best candidate for improved water flux and low reverse salt flux (RSF), it could accelerate cell division, reducing settleability during the FO process. However, RSF originated from NaCl could increase lipid content (~ 49%) in algal biomass probably due to the osmotic imbalance in algal cells. During FO operations, membrane fouling would be an inherent problem against sustainable algae dewatering. In this study, a novel approach was investigated by coupling the FO with an electric field for developing repulsion forces that can prolong the filtration cycle and mitigate foulant attachment. Several electric fields (0.33, 0.13 and 0.03 V mm-1) were applied in continuous and pulsing modes (10sec intervals) to mitigate membrane fouling for effective algae dewatering. The electric field FO configuration used in this study was able to produce 3.8, 2.2 and 2.2 times greater flux at the applied potential of -1.0, -0.4, and -0.1 V, respectively, compared to the control (without an electric field). A high potential of -10 V for 60 sec was applied as an optimal cleaning procedure with a high ability to recover flux (99%). The study also investigated the effect of the electric fields on bulk pH, conductivity, settling velocity, lipid content and microalgal morphology. Overall, this study demonstrates a novel technology for algae dewatering in FO application using the aquaporin-based PES membrane.
Show less - Date Issued
- 2019
- Identifier
- CFE0007507, ucf:52632
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007507
- Title
- Nanofiltration of Perfluorinated Compounds as a Function of Water Matrix Properties.
- Creator
-
Toure, Hadi, Sadmani, A H M Anwar, Duranceau, Steven, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Perfluorinated compounds (PFCs) have been manufactured and used in various industries including food packaging, paintings, and coating industries. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most commonly investigated PFCs that have bioaccumulative properties and a strong persistence in environment. Despite the growing interest in using membrane technology to remove PFOA and PFOS from water, little information is available on the impact of natural water...
Show morePerfluorinated compounds (PFCs) have been manufactured and used in various industries including food packaging, paintings, and coating industries. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most commonly investigated PFCs that have bioaccumulative properties and a strong persistence in environment. Despite the growing interest in using membrane technology to remove PFOA and PFOS from water, little information is available on the impact of natural water matrices on the removal of PFOA and PFOS when using nanofiltration (NF). The presence of natural organic matter (NOM) and cations (Ca2+ and Mg2+) in water matrices and their interactions with the PFCs may significantly impact their removal efficiency. The current study compared the rejection of PFOA and PFOS from laboratory-prepared water (deionized water), surface water and groundwater using a commercial NF membrane (NE 70). Three different experiments were conducted for 20 hours using a bench- scale flat sheet unit. Feed and permeate samples were collected and analyzed to determine the PFOA and PFOS concentrations using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The compound rejections varied from 71 to 80 % for PFOA and 42 to 80 % for PFOS. The results showed increased rejection of PFOA/S in the surface water and groundwaters when compared to the laboratory-prepared water. This is likely due to the presence of NOM and cations in the natural water matrices. The permeate flux declined (12.3-56.2 %) as more cations and NOM were present in the feedwater, suggesting that the increased rejection of PFOS in natural waters may be due to membrane pore blockage.
Show less - Date Issued
- 2018
- Identifier
- CFE0007589, ucf:52539
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007589
- Title
- The Effect of Recycled Backwash Water Operations on Fouling in a Coagulation-Ultrafiltration Process and Impact of Preozonation on Membrane Productivity.
- Creator
-
Biscardi, Paul, Duranceau, Steven, Sadmani, A H M Anwar, Lee, Woo Hyoung, Clausen, Christian, University of Central Florida
- Abstract / Description
-
This dissertation consists of research that focused on pretreatment strategies to reduce fouling of ultrafiltration (UF) membranes used for drinking water treatment, and was segmented into four key components. (1) In the first component of the work, the long-term fouling behavior of a polyethersulfone (PES) hollow-fiber UF membrane was studied at the pilot-scale for treatment of surface water over a one-year period. Pilot testing of a coagulation-flocculation-sedimentation (CFS) pretreatment...
Show moreThis dissertation consists of research that focused on pretreatment strategies to reduce fouling of ultrafiltration (UF) membranes used for drinking water treatment, and was segmented into four key components. (1) In the first component of the work, the long-term fouling behavior of a polyethersulfone (PES) hollow-fiber UF membrane was studied at the pilot-scale for treatment of surface water over a one-year period. Pilot testing of a coagulation-flocculation-sedimentation (CFS) pretreatment system revealed that chemically irreversible fouling was poorly correlated with turbidity and total organic carbon. It was also shown that recycled backwash water may have impacted membrane process performance, and that chemically irreversible fouling was responsive to changes in pretreatment configuration. (2) In the second component, pre-oxidation with ozone (preozonation) was then studied as a pretreatment process to reduce natural organic matter (NOM) fouling at the pilot-scale. This work suggested that preozonation reduced long-term chemically irreversible fouling. The chemically reversible fouling index increased by 59%, indicating that preozonation changed the characteristics of the foulants, yielding more effective chemically enhanced backwashes. (3) Bench-scale work that studied changes in NOM characteristics associated with the improved process performance were performed using fluorescent excitation-emission (EEM) spectroscopy and high-performance size-exclusion chromatography (HPSEC). Specifically, ozone was applied prior to a CFS-UF process and compared to a CFS-UF condition without ozone as the control. Although CFS reduced turbidity by 29%, ozone, when integrated with CFS increased turbidity by 58%, impacting downstream UF performance. As expected, ozone, when integrated with CFS and UF reduced filtrate true color by 40%, UV254 absorbance by 11%, and SUVA by 30%, relative to the control, indicating that preozonation changed the characteristics of the dissolved organic carbon present in the source water. (4) Follow-up bench-scale research using fluorescent EEM spectroscopy and HPSEC assessed operational strategies that impacted organic fouling. Specifically, the fate of fluorescing substances during the recycling of membrane backwash water (MBWW) ahead of CFS-UF process was investigated. Bench-scale UF membranes were used to generate MBWW from a CFS-treated surface water containing 21 mg/L dissolved organic carbon (DOC) registering a 0.95 cm-1 UV254 absorbance that had been coagulated with 100 mg/L with polyaluminum chloride. CFS settled water, when processed with UF, produced MBWW containing 9 mg/L DOC registering a 0.25 cm-1 UV254 absorbance. HPSEC with UV254 detection demonstrated an analogous UV254 reduction as measured by detector response. However, fluorescence EEM spectroscopy revealed that protein-like substances, known to be associated with irreversible fouling, had been concentrated in the MBWW. In order to evaluate recycling operations on overall DOC removal in a CFS-UF process, a blend of 30% MBWW with 70% of raw water was treated, resulting in an overall DOC removal of 73%. However, without MBWW recycle, the CFS-UF process removed less of the influent DOC (63%). In summary, this research demonstrated that NOM characteristics within MBWW should be considered when recycling backwash water in PES membrane operations, and that preozonation reduces chemically irreversible fouling when incorporated into a CSF-UF system.
Show less - Date Issued
- 2016
- Identifier
- CFE0006074, ucf:50951
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006074
- Title
- Improvements on Instrumentation to Explore the Multidimensionality of Luminescence Spectroscopy.
- Creator
-
Moore, Anthony, Campiglia, Andres, Chumbimuni Torres, Karin, Harper, James, Rex, Matthew, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
This dissertation presents experimental and instrumentation developments that take full advantage of the multidimensional nature of line narrowing spectroscopy at liquid nitrogen (77 K) and liquid helium (4.2 K) temperatures. The inconvenience of sample freezing procedures is eliminated with the aid of cryogenic fiber optic probes. Rapid collection of multidimensional data formats such as wavelength time matrices, excitation emission matrices, time-resolved excitation emission matrices and...
Show moreThis dissertation presents experimental and instrumentation developments that take full advantage of the multidimensional nature of line narrowing spectroscopy at liquid nitrogen (77 K) and liquid helium (4.2 K) temperatures. The inconvenience of sample freezing procedures is eliminated with the aid of cryogenic fiber optic probes. Rapid collection of multidimensional data formats such as wavelength time matrices, excitation emission matrices, time-resolved excitation emission matrices and time resolved excitation emission cubes is made possible with the combination of a pulsed tunable dye laser, a spectrograph and an intensifier-charged coupled device. These data formats provide unique opportunities for processing vibrational luminescence data with second order multivariate calibration algorithms. The use of cryogenic fiber optic probes is extended to commercial instrumentation. An attractive feature of spectrofluorimeters with excitation and emission monochromators is the possibility to record synchronous spectra. The advantages of this approach, which include narrowing of spectral bandwidth and simplification of emission spectra, were demonstrated with the direct analysis of highly toxic dibenzopyrene isomers. The same is true for the collection of steady-state fluorescence excitation-emission matrices. These approaches provide a general solution to unpredictable spectral interference, a ubiquitous problem for the analysis of organic pollutants in environmental samples of unknown composition. Since commercial spectrofluorimeters are readily available in most academic institutions, industrial settings and research institutes, the developments presented here should facilitate the widespread application of line-narrowing spectroscopic techniques to the direct determination, no chromatographic separation, of highly toxic compounds in complex environmental matrixes of unknown composition.
Show less - Date Issued
- 2015
- Identifier
- CFE0005847, ucf:50934
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005847
- Title
- Anthropogenic Organic Chemical Removal from a Surficial Groundwater and Mass Transfer Modeling in a Nanofiltration Membrane Process.
- Creator
-
Jeffery, Samantha, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Yestrebsky, Cherie, University of Central Florida
- Abstract / Description
-
This dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine...
Show moreThis dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine monitoring of fourteen TrOCs in reclaimed water and at the water treatment facility revealed varying degrees of TrOC detection in the environment. Certain TrOCs, including caffeine and DEET, were detected in a majority of the water sampling locations evaluated in this work. However, subsequent dilution with highly-treated reverse osmosis (RO) permeate from alternative supplies resulted in TrOCs below detection limits in potable water at the point-of-entry (POE). Pilot testing was employed to determine the extent of TrOC removal by NF. Prior to evaluating TrOC removal, hydraulic transients within the pilot process were first examined to determine the required length of time the pilot needed to reach steady-state. The transient response of a center-port NF membrane process was evaluated using a step-input dose of a sodium chloride solution. The pilot was configured as a two-stage, split-feed, center-exit, 7:2 pressure vessel array process, where the feed water is fed to both ends of six element pressure vessels, and permeate and concentrate streams are collected after only three membrane elements. The transient response was described as a log-logistic system with a maximum delay time of 285 seconds for an 85% water recovery and 267 gallon per minute feed flowrate.Eleven TrOC pilot unit experiments were conducted with feed concentrations ranging from 0.52 to 4,500 ?g/L. TrOC rejection was well-correlated with compound molecular volume and polarizability, with coefficient of determination (R2) values of 0.94. To enhance this correlation, an extensive literature review was conducted and independent literature sources were correlated with rejection. Literature citations reporting the removal effectiveness of an additional sixty-one TrOCs by loose NF membranes (a total of 95 data points) were found to be well-correlated with molecular volume and polarizability, with R2 values of 0.72 and 0.71, respectively.Of the TrOC's detected during this research, the anthropogenic solute caffeine was selected to be modeled using the homogeneous solution diffusion model (HSDM) and the HSDM with film theory (HSDM-FT). Mass transfer coefficients, K_w (water) K_s (caffeine), and k_b (caffeine back-transport) were determined experimentally, and K_s was also determined using the Sherwood correlation method. Findings indicate that caffeine transport through the NF pilot could be explained using experimentally determined K_s values without incorporating film theory, since the HSDM resulted in a better correlation between predicted and actual caffeine permeate concentrations compared to the HSDM-FT and the HSDM using K_s obtained using Sherwood applications. Predicted versus actual caffeine content was linearly compared, revealing R2 values on the order of 0.99, 0.96, and 0.99 for the HSDM without FT, HSDM-FT, and HSDM using a K_s value obtained using the Sherwood correlation method. However, the use of the HSDM-FT and the Sherwood number resulted in the over-prediction of caffeine concentrations in permeate streams by 27 percent and 104 percent, respectively.
Show less - Date Issued
- 2016
- Identifier
- CFE0006331, ucf:51545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006331
- Title
- Modeling Mass Transfer and Assessing Cost and Performance of a Hollow Fiber Nanofiltration Membrane Process.
- Creator
-
Yonge, David, Duranceau, Steven, Sadmani, A H M Anwar, Lee, Woo Hyoung, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Bench-scale water treatment testing of three next generation hollow-fiber (HF) nanofiltration (NF) membranes was conducted to characterize divalent ion rejection capabilities and investigate removal mechanisms. Existing mathematical models were investigated to describe solute transport using synthetic magnesium sulfate solutions including the size exclusion model, homogenous solution diffusion (HSD) model, dimensional analysis, and the HSD model incorporating film theory. Solute transport for...
Show moreBench-scale water treatment testing of three next generation hollow-fiber (HF) nanofiltration (NF) membranes was conducted to characterize divalent ion rejection capabilities and investigate removal mechanisms. Existing mathematical models were investigated to describe solute transport using synthetic magnesium sulfate solutions including the size exclusion model, homogenous solution diffusion (HSD) model, dimensional analysis, and the HSD model incorporating film theory. Solute transport for two of the membranes were described by HSD theory and were predictive of their 90% divalent ion removal. A third membrane was more accurately modeled using size exclusion and was found to be predictive of its 40% divalent ion rejection. Feed ionic strength variation was shown to significantly impact rejection. In this work, semi-empirical models were developed to describe solute transport under varying feed ionic strength conditions. Bench-scale testing of aerated groundwater confirmed the HFNF membrane divalent ion rejection capabilities. Pilot testing of a commercially available HFNF membrane was shown to remove divalent ions and dissolved organic carbon (DOC) by 10% and 25%, respectively. Financial evaluations indicated that HFNF offered cost savings over traditional spiral-wound (SW) NF, $0.60/kgal versus $0.85/kgal operating costs, respectively. Traditional SWNF membranes produced superior water quality achieving 90% divalent ion removal and 96% DOC removal but required media and membrane filtration pretreatment. When considering the costs of constructing a new 2 million gallon per day (permeate) HFNF process, conceptual cost comparisons revealed that HFNF technologies could reduce capital costs by approximately $1 million, and operating costs by $0.27/kgal for an 85% recovery plant.
Show less - Date Issued
- 2016
- Identifier
- CFE0006549, ucf:51346
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006549
- Title
- Analysis of Benzopyrenes and Benzopyrene Metabolites by Fluorescence Spectroscopy Techniques.
- Creator
-
Al-Farhani, Bassam, Campiglia, Andres, Harper, James, Zou, Shengli, Frazer, Andrew, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Polycyclic aromatic hydrocarbons (PAHs) are some of the most common and toxic pollutants encountered worldwide. Presently, monitoring is restricted to sixteen PAHs, but it is well understood that this list omits many toxic PAHs. Among the (")forgotten(") PAHs, isomers with molecular weight 302 are of particular concern due to their high toxicological properties. The chromatographic analysis of PAHs with MW 302 is challenged by similar retention times and virtually identical mass fragmentation...
Show morePolycyclic aromatic hydrocarbons (PAHs) are some of the most common and toxic pollutants encountered worldwide. Presently, monitoring is restricted to sixteen PAHs, but it is well understood that this list omits many toxic PAHs. Among the (")forgotten(") PAHs, isomers with molecular weight 302 are of particular concern due to their high toxicological properties. The chromatographic analysis of PAHs with MW 302 is challenged by similar retention times and virtually identical mass fragmentation patterns.The first original component of this dissertation evolves from a high-resolution spectroscopic approach specifically developed to fulfil this gap. Herein, 4.2 K Laser-Excited Time-Resolved Shpol'skii Spectroscopy (4.2K LETRSS) is applied to the analysis of HMW-PAHs in a complex coal tar standard reference material (SRM 1597a). The spectral and lifetime information obtained with LETRSS provide the required selectivity for the unambiguous determination of PAH isomers in the high-performance liquid chromatography (HPLC) fractions. Complete LETRSS analysis is possible with microliters of HPLC fractions and organic solvent. The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach a unique alternative for the analysis of isomers of HMW-PAHs in complex environmental samples.The second original component of this dissertation focuses on the development of screening methodology for the routine analysis of PAH metabolites in urine samples. It explores the room-temperature fluorescence (RTF) properties of 3-hydroxy-benzo[a]pyrene, benzo[a]pyrene-trans-9,10-dihydrodiol, benzo[a]pyrene-r-7,t-8,c-9-tetrahydrotriol and benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol previously extracted with octadecyl-silica membranes. RTF measurements from extraction membranes are carried out with the aid of fiber optic probe that eliminates the need for manual optimization of signal intensities. Relative standard deviations varying from 2.07% (benzo[a]pyrene-r-7,t-8,c-9-tetrahydrotriol) to 8.55% (3-hydroxy-benzo[a]pyrene) were obtained with a straightforward procedure. Analytical recoveries from human urine samples varied from 87.54 (&)#177; 3.11% (3-hydroxy-benzo[a]pyrene) to 99.77 (&)#177; 2.48% (benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol). The excellent analytical figures of merit and the simplicity of the experimental procedure demonstrate the potential of Solid phase extraction-RTF for screening biomarkers of PAH exposure in numerous urine samples.
Show less - Date Issued
- 2016
- Identifier
- CFE0006520, ucf:51363
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006520
- Title
- The effect of glycerol on readily biodegradable chemical oxygen demand (RBCOD) in a wastewater stream.
- Creator
-
Rawut, Rojina, Sadmani, A H M Anwar, Lee, Woo Hyoung, Duranceau, Steven, University of Central Florida
- Abstract / Description
-
This study evaluated the short-term effects of glycerol addition on readily biodegradable (RB) chemical oxygen demand (COD) in a carbon limited wastewater influent. The presence of an RB fraction provides with a suitable substrate for microorganisms to produce volatile fatty acids (VFA). The oxygen utilization rate (OUR) has been used to evaluate the oxygen consumption for RB substrate in wastewater. Wastewater with low organic content contains limited RB substrate, and thus, additional...
Show moreThis study evaluated the short-term effects of glycerol addition on readily biodegradable (RB) chemical oxygen demand (COD) in a carbon limited wastewater influent. The presence of an RB fraction provides with a suitable substrate for microorganisms to produce volatile fatty acids (VFA). The oxygen utilization rate (OUR) has been used to evaluate the oxygen consumption for RB substrate in wastewater. Wastewater with low organic content contains limited RB substrate, and thus, additional carbon source is required to improve biological treatment capability. Acetate, propionate, methanol, and glycerol are the commonly available carbon sources for biological treatment process. However, the cost of acetate and propionate are relatively high, and it is not economical to use these carbon sources in the wastewater plant. The use of methanol as a carbon source inherently poses safety issues in field applications due to its toxic and flammable properties. On the other hand, crude glycerol is the byproduct of biodiesel, which is an excellent carbon source alternative. However, crude glycerol contains impurities and requires a certain degree of purification to enhance the performance. The samples for the study were collected from the Iron Bridge Wastewater Reclamation Facility (Oviedo, FL) designed for treating municipal wastewater. The total COD (TCOD) of the sample influent was in the range of 237 to 408 mg COD/L, and RBCOD value was between 38 and 80.5 mg COD/L, containing up to 10 mg COD/L of VFA. This study also demonstrates the relationship between the glycerol concentration and OURs during the diauxic growth phase from the addition of glycerol. The growth was due to the existence of RB substrate and availability of glycerol for the microorganisms. TCOD increased from 284 to 378 mg COD/L and from 284 mg COD/L to 323 mg COD/L by spiking approximately 30 and 15 mL of glycerol stock solution (6.67 g/L), respectively. RBCOD increased from 45 to 89 mg COD/L and 55 mg COD/ L by spiking 30 mL and 15 ml glycerol stock solution, respectively. The initial influent heterotrophic active biomass (ZBH) increased from 5.4 to 15.8 mg VSS/L (8 to 23.4 mg COD/L) due to the addition of glycerol, indicating that the glycerol may be an adequate carbon source. The COD of wastewater with limited VFA (e.g., 10 mg COD/L) increased up to 2,502 mg COD/L where propionic acid (2,468 mg COD/L) exists as the primary end product with a small quantity of acetic acid (34 mg COD/L). Propionic acid was the main VFA component fermented from the glycerol addition. Glycerol addition led to increased RBCOD accompanied by high VFA production. This research investigated the short-term effect of glycerol addition on existing RBCOD in wastewater. It is recommended to explore the effect of increased RBCOD by the addition of glycerol to the effluent N and P for future study.
Show less - Date Issued
- 2016
- Identifier
- CFE0006543, ucf:51324
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006543
- Title
- Optimization of Glycerol or Biodiesel Waste Prefermentation to Improve EBPR.
- Creator
-
Ghasemi, Marzieh, Randall, Andrew, Duranceau, Steven, Lee, Woo Hyoung, Jimenez, Jose, University of Central Florida
- Abstract / Description
-
The enhanced biological phosphorus removal (EBPR) process efficiency relies on different operational and process conditions especially the type of carbon source available in the wastewater. Acetic acid and propionic acid are the two major volatile fatty acids (VFAs) found in domestic wastewater which can drive biological phosphorus (P) removal to the desired level. However, often domestic wastewater does not have a sufficient amount of VFAs. Due to high acetate and propionate production-cost,...
Show moreThe enhanced biological phosphorus removal (EBPR) process efficiency relies on different operational and process conditions especially the type of carbon source available in the wastewater. Acetic acid and propionic acid are the two major volatile fatty acids (VFAs) found in domestic wastewater which can drive biological phosphorus (P) removal to the desired level. However, often domestic wastewater does not have a sufficient amount of VFAs. Due to high acetate and propionate production-cost, it is not economic to add acetate and propionate directly in full-scale wastewater treatment plants. This brought up the idea of using external carbon sources (e. g. molasses has been used successfully) in EBPR systems that can be converted to VFAs through a fermentation process. On the other hand, biodiesel fuels have been produced increasingly over the last decade. Crude glycerol is a biodiesel production major by-product that can be used as an external carbon source in wastewater treatment plant. Therefore, the main objective of this research is to optimize the glycerol/biodiesel waste fermentation process' operational conditions in pursuit of producing more favorable fermentation end-products (i. e. a mixture of acetic acid and propionic acid) by adding glycerol to a prefermenter versus direct addition to the anaerobic zone or fermentation with waste activated sludge. For this reason, different prefermenter parameters namely: mixing intensity, pH, temperature and solids retention time (SRT), were studied in a small scale fermentation media (serum bottles) and bench scale semi-continuous batch prefermenters. Experimental results revealed that glycerol/biodiesel waste fermentation resulted in a significant amount of VFAs production with propionic acid as the superior end-product followed by acetic acid and butyric acid. The VFA production was at its highest level when the initial pH was adjusted to 7 and 8.5. However, the optimum pH with respect to propionic acid production was 7. Increasing the temperature in serum bottles favored the total VFA production, specifically in the form of propionic acid. Regarding the mixing energy inconsistent results were obtained in the serum bottles compared to the bench scale prefermenters. The VFA production in mixed serum bottles at 200 rpm was higher than that of un-mixed ones. On the other hand, the unmixed or slowly mixed bench scale prefermenters showed higher VFA production than the mixed reactors. However, the serum bottles did not operate long enough to account for biomass acclimation and other long-term effects that the prefermenter experiments could account for. As a consequence one of the most important and consistently results was that VFA production was significantly enhanced by reducing mixing intensity from 100 rpm to 7 rpm and even ceasing mixing all together. This was true both for primary solids and glycerol. In addition propionate content was high under both high and low intensity, and adding glycerol also increased the fraction of primary solids that formed propionic acid instead of acetic acid. Increasing the SRT from 2 to 4 days increased the VFA production about 12% on average. In order to investigate the effect of glycerol on EBPR process efficiency two identical A2/O systems were monitored for 3 months. Experimental results suggested that glycerol addition could increase the P removal efficiency significantly. Adding glycerol to the prefermenter rather than the anaerobic zone resulted in a lower effluent soluble ortho phosphorus (SOP) (0.4 mg-P/L vs. 0.6 mg-P/L) but the difference was apparently statistically significant. Future experimentation should be done to determine if this effect is consistent, especially in carbon poor wastewaters. Also it would be desirable to conduct a longer pilot study or a full scale study to determine if this improvement in effluent SOP remains true over a range of temperature and changing influent conditions.
Show less - Date Issued
- 2015
- Identifier
- CFE0006310, ucf:51612
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006310
- Title
- Green Technologies and Sensor Networks for BMP Evaluation in Stormwater Retention Ponds and Wetlands.
- Creator
-
Crawford, Anthony, Chang, Ni-bin, Wanielista, Martin, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
The aim of this thesis is to examine and develop new techniques in stormwater Best Management Practices (BMP) for nutrient and erosion reduction and monitoring by incorporation of low impact green technologies and sensor networks. Previous research has found excessive nutrient loading of nitrogen and phosphorus species from urban stormwater runoff can lead to ecological degradation and eutrophication of receiving lakes and rivers (Fareed and Abid, 2005). In response, the Florida Department of...
Show moreThe aim of this thesis is to examine and develop new techniques in stormwater Best Management Practices (BMP) for nutrient and erosion reduction and monitoring by incorporation of low impact green technologies and sensor networks. Previous research has found excessive nutrient loading of nitrogen and phosphorus species from urban stormwater runoff can lead to ecological degradation and eutrophication of receiving lakes and rivers (Fareed and Abid, 2005). In response, the Florida Department of Environmental Protection (FDEP) has set forth reduction goals as established in Total Maximum Daily Load (TMDL) reports to reduce nutrient loading and restore, or maintain, Florida water bodies to reasonable conditions. Often times current stormwater management practices are not sufficient to attain these goals and further improvements in system design are required. In order to reach these goals, affordable technologies designed for both nutrient reduction and monitoring of system performance to deepen and improve our understanding of stormwater processes are required. Firstly this thesis examines the performance of three types of continuous-cycle Media Bed Reactors (MBRs) using Bio-activated Adsorptive Media (BAM) for nutrient reduction in three retention ponds located throughout the Central Florida region. Chapter 2 examines the use of a Sloped and Horizontal MBRs arranged in a baffling configuration, whereas Chapter 3 examines the field performance of a Floating MBR arranged in an upflow configuration. Each MBR was analyzed for performance in reducing total phosphorus, soluble reactive phosphorus, total nitrogen, organic nitrogen, ammonia, nitrates + nitrites, turbidity and chlorophyll a species as measured from the influent to effluent ends of the MBR. The results of the experiments indicate that MBRs may be combined with retention ponds to provide (")green technology(") alternatives for inter-event treatment of nutrient species in urban stormwater runoff by use of recyclable sorption media and solar powered submersible pumps. Secondly the thesis focusses on three new devices for BMP monitoring which may be integrated into wireless networks, including a Groundwater Variable Probe (GVP) for velocity, hydraulic conductivity and dispersion measurements in a retention pond bank (Chapter 4), an affordable Wireless Automated Sampling Network (WASN) for sampling and analysis of nutrient flux gradients in retention ponds (Chapter 5), and finally an Arc-Type Automated Pulse Tracer Velocimeter (APTV) for low velocity and direction surface water measurements in retention ponds and constructed wetlands (Chapter 6). The GVP was integrated with other environmental sensing probes to create a remote sensing station, capable of real-time data analysis of sub-surface conditions including soil moisture, water table stage. Such abilities, when synced with user control capabilities, may help to increase methods of monitoring for applications including erosion control, bank stability predictions, monitoring of groundwater pollutant plume migration, and establishing hydraulic residence times through subsurface BMPs such as permeable reactive barriers. Advancement of this technology may be used by establishing additional sub-stations, thereby creating sensing networks covering broader areas on the kilometer scale. Two methods for velocity calculation were developed for the GVP for low flow (Pe (<) 0.2) and high flow (Pe (>) 0.6) conditions. The GVP was found to operate from a 26-505 cmd-1 range in the laboratory to within (&)#177;26% of expected velocities for high-flow conditions and effectively measure directional flow angles to within (&)#177;14? of expected. Hydraulic conductivity measurements made by the GVP were confirmed to within (&)#177;12% as compared to laboratory measurements. The GVP was found capable of measuring the dispersion coefficient in the laboratory, however turbulent interferences caused during injection was found to occur. Further advancement of the technology may be merited to improve dispersion coefficient measurements. Automated water sampling can provide valuable information of the spatial and temporal distribution of pollutant loading in surface water environments. This ability is expanded with the development of the WASN, providing an affordable, ease-of-use method compared to conventional automated water samplers currently on the market. The WASN was found to effectively operate by text activation via GSM cellular networks to an activation module. Propagation of the signal was distributed to collection units via XBee modules operating on point-to-point star communication using an IEEE 802.15.4 protocol. Signal communications effectively transmitted in the field during a storm event to within a range of 200 feet and collected 50 (&)#177;4 ml samples at synced timed increments. A tracer study confirmed that no mixing of samples occurs when a factor of safety of 2 is applied to flush times. This technology provides similar abilities to current market devices at down to 10% of the cost, thereby allowing much more sampling locations for a similar budget. The Arc-Type APTV is useful in establishing both low range horizontal velocity fields and expanding low range velocity measurements below detection ranges of mechanical velocity meters. Installation of a field station showed system functionality, which may be integrated with other environmental sensing probes for surface water testing. This may assist in nutrient distribution analysis and understanding the complex behavior of hydraulic retention times within wetland systems. The device was found to work effectively in both lab and field environments from a 0.02 (-) 5.0 cms-1 range and measure velocity within approximately (&)#177;10% of an acoustic Doppler velocimeter and within an average of (&)#177;10? of directional measurements. A drop in accuracy was measured for velocity ranges (>)4.5 cms-1. The field station operated on 3G CDMA cellular network two-way communication by installation of a Raven cellular modem. Use of LoggerNet software allowed control and data acquisition from anywhere with an internet connection. This thesis also introduces brief discussions on expanding these (")point(") measurement technologies into sensing networks. Installation of sub-stations with communication protocols to one central master node station may broaden the sensing system into much larger kilometer-scale ranges, thus allowing large spatial analysis of environmental conditions. Such an integration into controllable sensing networks may help bridge the gap and add calibration and verification abilities between fine-resolution (")point(") measurements and large scale technologies such as Electrical Resistivity Tomography and satellite remote sensing. Furthermore, application of sensing networks may assist in calibration and verification of surface and groundwater models such as ModFlow, SVFlux and FEHM.
Show less - Date Issued
- 2014
- Identifier
- CFE0005776, ucf:50066
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005776
- Title
- A Systems Approach to Sustainable Energy Portfolio Development.
- Creator
-
Hadian Niasar, Saeed, Reinhart, Debra, Madani Larijani, Kaveh, Wang, Dingbao, Lee, Woo Hyoung, Pazour, Jennifer, University of Central Florida
- Abstract / Description
-
Adequate energy supply has become one of the vital components of human development and economic growth of nations. In fact, major components of the global economy such as transportation services, communications, industrial processes, and construction activities are dependent on adequate energy resources. Even mining and extraction of energy resources, including harnessing the forces of nature to produce energy, are dependent on accessibility of sufficient energy in the appropriate form at the...
Show moreAdequate energy supply has become one of the vital components of human development and economic growth of nations. In fact, major components of the global economy such as transportation services, communications, industrial processes, and construction activities are dependent on adequate energy resources. Even mining and extraction of energy resources, including harnessing the forces of nature to produce energy, are dependent on accessibility of sufficient energy in the appropriate form at the desired location. Therefore, energy resource planning and management to provide appropriate energy in terms of both quantity and quality has become a priority at the global level. The increasing demand for energy due to growing population, higher living standards, and economic development magnifies the importance of reliable energy plans. In addition, the uneven distribution of traditional fossil fuel energy sources on the Earth and the resulting political and economic interactions are other sources of complexity within energy planning. The competition over fossil fuels that exists due to gradual depletion of such sources and the tremendous thirst of current global economic operations for these sources, as well as the sensitivity of fossil fuel supplies and prices to global conditions, all add to the complexity of effective energy planning. In addition to diversification of fossil fuel supply sources as a means of increasing national energy security, many governments are investing in non-fossil fuels, especially renewable energy sources, to combat the risks associated with adequate energy supply. Moreover, increasing the number of energy sources also adds further complication to energy planning. Global warming, resulting from concentration of greenhouse gas emissions in the atmosphere, influences energy infrastructure investments and operations management as a result of international treaty obligations and other regulations requiring that emissions be cut to sustainable levels. Burning fossil fuel, as one of the substantial driving factors of global warming and energy insecurity, is mostly impacted by such policies, pushing forward the implementation of renewable energy polices. Thus, modern energy portfolios comprise a mix of renewable energy sources and fossil fuels, with an increasing share of renewables over time. Many governments have been setting renewable energy targets that mandate increasing energy production from such sources over time. Reliance on renewable energy sources certainly helps with reduction of greenhouse gas emissions while improving national energy security. However, the growing implementation of renewable energy has some limitations. Such energy technologies are not always as cheap as fossil fuel sources, mostly due to immaturity of these energy sources in most locations as well as high prices of the materials and equipment to harness the forces of nature and transform them to usable energy. In addition, despite the fact that renewable energy sources are traditionally considered to be environmentally friendly, compared to fossil fuels, they sometimes require more natural resources such as water and land to operate and produce energy. Hence, the massive production of energy from these sources may lead to water shortage, land use change, increasing food prices, and insecurity of water supplies. In other words, the energy production from renewables might be a solution to reduce greenhouse gas emissions, but it might become a source of other problems such as scarcity of natural resources.The fact that future energy mix will rely more on renewable sources is undeniable, mostly due to depletion of fossil fuel sources over time. However, the aforementioned limitations pose a challenge to general policies that encourage immediate substitution of fossil fuels with renewables to battle climate change. In fact, such limitations should be taken into account in developing reliable energy policies that seek adequate energy supply with minimal secondary effects. Traditional energy policies have been suggesting the expansion of least cost energy options, which were mostly fossil fuels. Such sources used to be considered riskless energy options with low volatility in the absence of competitive energy markets in which various energy technologies are competing over larger market shares. Evolution of renewable energy technologies, however, complicated energy planning due to emerging risks that emanated mostly from high price volatility. Hence, energy planning began to be seen as investment problems in which the costs of energy portfolio were minimized while attempting to manage associated price risks. So, energy policies continued to rely on risky fossil fuel options and small shares of renewables with the primary goal to reduce generation costs. With emerging symptoms of climate change and the resulting consequences, the new policies accounted for the costs of carbon emissions control in addition to other costs. Such policies also encouraged the increased use of renewable energy sources. Emissions control cost is not an appropriate measure of damages because these costs are substantially less than the economic damages resulting from emissions. In addition, the effects of such policies on natural resources such as water and land is not directly taken into account. However, sustainable energy policies should be able to capture such complexities, risks, and tradeoffs within energy planning. Therefore, there is a need for adequate supply of energy while addressing issues such as global warming, energy security, economy, and environmental impacts of energy production processes. The effort in this study is to develop an energy portfolio assessment model to address the aforementioned concerns.This research utilized energy performance data, gathered from extensive review of articles and governmental institution reports. The energy performance values, namely carbon footprint, water footprint, land footprint, and cost of energy production were carefully selected in order to have the same basis for comparison purposes. If needed, adjustment factors were applied. In addition, the Energy Information Administration (EIA) energy projection scenarios were selected as the basis for estimating the share of the energy sources over the years until 2035. Furthermore, the resource availability in different states within the U.S. was obtained from publicly available governmental institutions that provide such statistics. Specifically, the carbon emissions magnitudes (metric tons per capita) for different states were extracted from EIA databases, states' freshwater withdrawals (cubic meters per capita) were found from USGS databases, states' land availability values (square kilometers) were obtained from the U.S. Census Bureau, and economic resource availability (GDP per capita) for different states were acquired from the Bureau of Economic Analysis.In this study, first, the impacts of energy production processes on global freshwater resources are investigated based on different energy projection scenarios. Considering the need for investing on energy sources with minimum environmental impacts while securing maximum efficiency, a systems approach is adopted to quantify the resource use efficiency of energy sources under sustainability indicators. The sensitivity and robustness of the resource use efficiency scores are then investigated versus existing energy performance uncertainties and varying resource availability conditions. The resource use efficiency of the energy sources is then regionalized for different resource limitation conditions in states within the U.S. Finally, a sustainable energy planning framework is developed based on Modern Portfolio Theory (MPT) and Post-Modern Portfolio Theory (PMPT) with consideration of the resource use efficiency measures and associated efficiency risks.In the energy-water nexus investigation, the energy sources are categorized into 10 major groups with distinct water footprint magnitudes and associated uncertainties. The global water footprint of energy production processes are then estimated for different EIA energy mix scenarios over the 2012-2035 period. The outcomes indicate that the water footprint of energy production increases by almost 50% depending on the scenario. In fact, growing energy production is not the only reason for increasing the energy related water footprint. Increasing the share of water intensive energy sources in the future energy mix is another driver of increasing global water footprint of energy in the future. The results of the energies' water footprint analysis demonstrate the need for a policy to reduce the water use of energy generation. Furthermore, the outcomes highlight the importance of considering the secondary impacts of energy production processes besides their carbon footprint and costs. The results also have policy implications for future energy investments in order to increase the water use efficiency of energy sources per unit of energy production, especially those with significant water footprint such as hydropower and biofuels.In the next step, substantial efforts have been dedicated to evaluating the efficiency of different energy sources from resource use perspective. For this purpose, a system of systems approach is adopted to measure the resource use efficiency of energy sources in the presence of trade-offs between independent yet interacting systems (climate, water, land, economy). Hence, a stochastic multi-criteria decision making (MCDM) framework is developed to compute the resource use efficiency scores for four sustainability assessment criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production considering existing performance uncertainties. The energy sources' performances under aforementioned sustainability criteria are represented in ranges due to uncertainties that exist because of technological and regional variations. Such uncertainties are captured by the model based on Monte-Carlo selection of random values and are translated into stochastic resource use efficiency scores. As the notion of optimality is not unique, five MCDM methods are exploited in the model to counterbalance the bias toward definition of optimality. This analysis is performed under (")no resource limitation(") conditions to highlight the quality of different energy sources from a resource use perspective. The resource use efficiency is defined as a dimensionless number in scale of 0-100, with greater numbers representing a higher efficiency. The outcomes of this analysis indicate that despite increasing popularity, not all renewable energy sources are more resource use efficient than non-renewable sources. This is especially true for biofuels and different types of ethanol that demonstrate lower resource use efficiency scores compared to natural gas and nuclear energy. It is found that geothermal energy and biomass energy from miscanthus are the most and least resource use efficient energy alternatives based on the performance data available in the literature. The analysis also shows that none of the energy sources are strictly dominant or strictly dominated by other energy sources. Following the resource use efficiency analysis, sensitivity and robustness analyses are performed to determine the impacts of resource limitations and existing performance uncertainties on resource use efficiency, respectively. Sensitivity analysis indicates that geothermal energy and ethanol from sugarcane have the lowest and highest resource use efficiency sensitivity, respectively. Also, it is found that from a resource use perspective, concentrated solar power (CSP) and hydropower are respectively the most and least robust energy options with respect to the existing performance uncertainties in the literature.In addition to resource use efficiency analysis, sensitivity analysis and robustness analysis, of energy sources, this study also investigates the scheme of the energy production mix within a specific region with certain characteristics, resource limitations, and availabilities. In fact, different energy sources, especially renewables, vary in demand for natural resources (such as water and land), environmental impacts, geographic requirements, and type of infrastructure required for energy production. In fact, the efficiency of energy sources from a resource use perspective is dependent upon regional specifications, so the energy portfolio varies for different regions due to varying resource availability conditions. Hence, the resource use efficiency scores of different energy technologies are calculated based on the aforementioned sustainability criteria and regional resource availability and limitation conditions (emissions, water resources, land, and GDP) within different U.S. states, regardless of the feasibility of energy alternatives in each state. Sustainability measures are given varying weights based on the emissions cap, available economic resources, land, and water resources in each state, upon which the resource use efficiency of energy sources is calculated by utilizing the system of systems framework developed in the previous step. Efficiency scores are graphically illustrated on GIS-based maps for different states and different energy sources. The results indicate that for some states, fossil fuels such as coal and natural gas are as efficient as renewables like wind and solar energy technologies from resource use perspective. In other words, energy sources' resource use efficiency is significantly sensitive to available resources and limitations in a certain location.Moreover, energy portfolio development models have been created in order to determine the share of different energy sources of total energy production, in order to meet energy demand, maintain energy security, and address climate change with the least possible adverse impacts on the environment. In fact, the traditional (")least cost(") energy portfolios are outdated and should be replaced with (")most efficient(") ones that are not only cost-effective, but also environmentally friendly. Hence, the calculated resource use efficiency scores and associated statistical analysis outcomes for a range of renewable and nonrenewable energy sources are fed into a portfolio selection framework to choose the appropriate energy mixes associated with the risk attitudes of decision makers. For this purpose, Modern Portfolio Theory (MPT) and Post-Modern Portfolio Theory (PMPT) are both employed to illustrate how different interpretations of (")risk of return(") yield different energy portfolios. The results indicate that 2012 energy mix and projected world's 2035 energy portfolio are not sustainable in terms of resource use efficiency and could be substituted with more reliable, more effective portfolios that address energy security and global warming with minimal environmental and economic impacts.
Show less - Date Issued
- 2013
- Identifier
- CFE0005001, ucf:50020
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005001