Current Search: Leuenberger, Michael (x)
View All Items
Pages
- Title
- ELECTRON TRANSPORT IN SINGLE MOLECULE MAGNET TRANSISTORS AND OPTICAL LAMBDA TRANSITIONS IN THE NITROGEN-VACANCY CENTER IN DIAMOND.
- Creator
-
Gonzalez, Gabriel, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
This thesis presents some theoretical studies dealing with quantum interference effects in electron transport through single molecule magnet transistors and a study on optical non-conserving spin transitions in the Nitrogen-vacancy center in diamond. The thesis starts with a brief general introduction to the physics of quantum transport through single electron transistors. Afterwards, the main body of the thesis is divided into three studies: (i) In chapter (2) we describe the properties of...
Show moreThis thesis presents some theoretical studies dealing with quantum interference effects in electron transport through single molecule magnet transistors and a study on optical non-conserving spin transitions in the Nitrogen-vacancy center in diamond. The thesis starts with a brief general introduction to the physics of quantum transport through single electron transistors. Afterwards, the main body of the thesis is divided into three studies: (i) In chapter (2) we describe the properties of single molecule magnets and the Berry phase interference present in this nanomagnets. We then propose a way to detect quantum interference experimentally in the current of a single molecule magnet transistor using polarized leads. We apply our theoretical results to the newly synthesized nanomagnet Ni4. (ii) In chapter (3) we review the Kondo effect and present a microscopic derivation of the Kondo Hamiltonian suitable for full and half integer spin nanomagnets. We then calculate the conductance of the single molecule magnet transistor in the presence of the Kondo effect for Ni4 and show how the Berry phase interference becomes temperature dependent. (iii) We conclude in chapter (4) with a theoretical study of the single Nitrogen vacancy defect center in diamond. We show that it is possible to have spin non-conserving transitions via the hyperfine interaction and propose a way to write and read quantum information using circularly polarized light by means of optical Lambda transitions in this solid state system.
Show less - Date Issued
- 2009
- Identifier
- CFE0002740, ucf:48179
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002740
- Title
- COMPUTATIONAL STUDY OF THE NEAR FIELD SPONTANEOUS CREATION OF PHOTONIC STATES COUPLED TO FEW LEVEL SYSTEMS.
- Creator
-
Tafur, Sergio, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
Models of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert...
Show moreModels of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert theorem which specifies the possible transitions during the spontaneous creation of a photonic state and its subsequent emission. The model presented in this dissertation describes the spatio-temporal evolution of photonic states by means of a Dirac-like equation for the photonic wave function within the region of interaction of a quantum source. As part of this aim, we describe the possibility to shift from traditional electrodynamics and quantum electrodynamics, in terms of electric and magnetic fields, to one in terms of a photonic wave function and its operators. The mapping between these will also be presented herein. It is further shown that the results of this model can be experimentally verified. The suggested method of verification relies on the direct comparison of the calculated density matrix or Wigner function, associated with the quantum state of a photon, to ones that are experimentally reconstructed through optical homodyne tomography techniques. In this non-perturbative model we describe the spontaneous creation of photonic state in a non-Markovian limit which does not implement the Weisskopf-Wigner approximation. We further show that this limit is important for the description of how a single photonic mode is created from the possibly infinite set of photonic frequencies $\nu_k$ that can be excited in a dielectric-cavity from the vacuum state. We use discretized central-difference approximations to the space and time partial derivatives, similar to finite-difference time domain models, to compute these results. The results presented herein show that near field effects need considered when describing adjacent quantum sources that are separated by distances that are small with respect to the wavelength of their spontaneously created photonic states. Additionally, within the future scope of this model,we seek results in the Purcell and Rabi regimes to describe enhanced spontaneous emission events from these few-level systems, as embedded in dielectric cavities. A final goal of this dissertation is to create novel computational and theoretical models that describe single and multiple photon states via single photon creation and annihilation operators.
Show less - Date Issued
- 2011
- Identifier
- CFE0003881, ucf:48739
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003881
- Title
- Dynamically Tunable Plasmonic Structural Color.
- Creator
-
Franklin, Daniel, Chanda, Debashis, Peale, Robert, Leuenberger, Michael, Wu, Shintson, University of Central Florida
- Abstract / Description
-
Functional surfaces which can control light across the electromagnetic spectrum are highly desirable. With the aid of advanced modeling and fabrication techniques, researchers have demonstrated surfaces with near arbitrary tailoring of reflected/transmitted amplitude, phase and polarization - the applications for which are diverse as light itself. These systems often comprise of structured metals and dielectrics that, when combined, manifest resonances dependent on structural dimensions. This...
Show moreFunctional surfaces which can control light across the electromagnetic spectrum are highly desirable. With the aid of advanced modeling and fabrication techniques, researchers have demonstrated surfaces with near arbitrary tailoring of reflected/transmitted amplitude, phase and polarization - the applications for which are diverse as light itself. These systems often comprise of structured metals and dielectrics that, when combined, manifest resonances dependent on structural dimensions. This attribute provides a convenient and direct path to arbitrarily engineer the surface's optical characteristics across many electromagnetic regimes. But while many of these plasmonic systems struggle to compete with the efficiency of pre-existing technologies, the ability to tune plamsonic structures post-fabrication is a distinct advantage which may lead to novel devices. In this work, I will summarize fundamental and applied aspects of tunable plasmonic systems as applied to the visible and infrared regimes. I will demonstrate how liquid crystal may be used to dynamically and reversibly tune the plasmonic resonances of metallic surfaces on a millisecond time scale. For the visible, this results in dynamic color-changing surfaces capable of covering the entire RGB color space and which is compatible with active addressing schemes. I will then show the application of these concepts to infrared absorbers through the use of liquid crystal and phase change materials. The later of these devices can find use in infrared data/image encoding, thermal management and camouflage. Together, these works explore the limits of tunable plasmonic systems and the novel devices they might lead to.
Show less - Date Issued
- 2018
- Identifier
- CFE0007001, ucf:52052
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007001
- Title
- The effect of carbon nanotube/organic semiconductor interfacial area on the performance of organic transistors.
- Creator
-
Kang, Narae, Khondaker, Saiful, Leuenberger, Michael, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Organic field-effect transistors (OFETs) have attracted tremendous attention due to their flexibility, transparency, easy processiblity and low cost of fabrication. High-performance OFETs are required for their potential applications in the organic electronic devices such as flexible display, integrated circuit, and radiofrequency identification tags. One of the major limiting factors in fabricating high-performance OFET is the large interfacial barrier between metal electrodes and OSC which...
Show moreOrganic field-effect transistors (OFETs) have attracted tremendous attention due to their flexibility, transparency, easy processiblity and low cost of fabrication. High-performance OFETs are required for their potential applications in the organic electronic devices such as flexible display, integrated circuit, and radiofrequency identification tags. One of the major limiting factors in fabricating high-performance OFET is the large interfacial barrier between metal electrodes and OSC which results in low charge injection from the metal electrodes to OSC. In order to overcome the challenge of low charge injection, carbon nanotubes (CNTs) have been suggested as a promising electrode material for organic electronic devices. In this dissertation, we study the effect of carbon nanotube (CNT) density in CNT electrodes on the performance of organic field effect transistor (OFETs). The devices were fabricated by thermal evaporation of pentacene on the Pd/single walled CNT (SWCNT) electrodes where SWCNTs of different density (0-30/um) were aligned on Pd using dielectrophoresis (DEP) and cut via oxygen plasma etching to keep the length of nanotube short compared to the channel length. From the electronic transport measurements of 40 devices, we show that the average saturation mobility of the devices increased from 0.02 for zero SWCNT to 0.06, 0.13 and 0.19 cm2/Vs for low (1-5 /(&)#181;m), medium (10-15 /(&)#181;m) and high (25-30 /(&)#181;m) SWCNT density in the electrodes, respectively. The increase is three, six and nine times for low, medium and high density SWCNTs in the electrode compared to the devices that did not contain any SWCNT. In addition, the current on-off ratio and on-current of the devices are increased up to 40 times and 20 times with increasing SWCNT density in the electrodes. Our study shows that although a few nanotubes in the electrode can improve the OFET device performance, significant improvement can be achieved by maximizing SWCNT/OSC interfacial area. The improved OFET performance can be explained due to a reduced barrier height of SWCNT/pentacene interface compared to metal/pentacene interface which provides more efficient charge injection pathways with increased SWCNT/pentacene interfacial area.
Show less - Date Issued
- 2012
- Identifier
- CFE0004558, ucf:49252
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004558
- Title
- Investigation of Breakdown Power During Electrical Breakdown of Aligned Array of Carbon Nanotubes.
- Creator
-
Bhanu, Udai, Khondaker, Saiful, Leuenberger, Michael, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Massively parallel arrays of single walled carbon nanotubes (SWNT) have attracted significant research interests because of their ability to (i) average out inhomogeneities of individual SWNTs, (ii) provide larger on currents, and (iii) reduce noise to provide higher cutoff frequency for radio frequency applications. However, the array contains both metallic and semiconducting SWNTs and the presence of metallic nanotube in an aligned array negatively affects the device properties. Therefore,...
Show moreMassively parallel arrays of single walled carbon nanotubes (SWNT) have attracted significant research interests because of their ability to (i) average out inhomogeneities of individual SWNTs, (ii) provide larger on currents, and (iii) reduce noise to provide higher cutoff frequency for radio frequency applications. However, the array contains both metallic and semiconducting SWNTs and the presence of metallic nanotube in an aligned array negatively affects the device properties. Therefore, it is essential to selectively remove metallic nanotubes to obtain better transistor properties. It was recently found that although such a selective removal can be effective for a low density array, it does not work in a high density array and lead to a correlated breakdown of the entire array giving rise to a nanofissure pattern.In order to obtain a deeper understanding of such a correlated SWNT breakdown, we studied the breakdown power in the successive electrical breakdown of both low ( (<) 2 /um) and high density ((>)10 /um) SWNT arrays. We show that the breakdown voltage in successive electrical breakdown increases for low density array while it decreases for high density arrays. The estimated power required for the breakdown remains constant for low density arrays while it decreases for high density arrays in successive electrical breakdowns. We also show that, while a simple model of parallel resistor network can explain the breakdown of low density array, it cannot explain the behavior for the high density array implying that the correlation between the closely spaced parallel nanotubes plays a big role in the successive breakdowns of the high density SWNTs.
Show less - Date Issued
- 2012
- Identifier
- CFE0004518, ucf:49292
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004518
- Title
- Spin Pumping in Lateral Double Quantum Dot Systems.
- Creator
-
Pelton, Sabine, Mucciolo, Eduardo, Ishigami, Marsahir, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
Electron transport in single lateral quantum dot (QD) and parallel lateral doublequantum dot (DQD) systems is modeled using semiclassical rate equations. The Zeemaneffect, in conjunction with resonant tunneling, is used to select the spin of electronsinvolved in transport. We show adiabatic spin pumping by periodic variation of thesystems' confining parameters, namely the quantum point contacts (QPCs) dictating theboundaries of the dots, and the gate voltage applied to each dot. The...
Show moreElectron transport in single lateral quantum dot (QD) and parallel lateral doublequantum dot (DQD) systems is modeled using semiclassical rate equations. The Zeemaneffect, in conjunction with resonant tunneling, is used to select the spin of electronsinvolved in transport. We show adiabatic spin pumping by periodic variation of thesystems' confining parameters, namely the quantum point contacts (QPCs) dictating theboundaries of the dots, and the gate voltage applied to each dot. The limitations ofadiabatic spin pumping are subsequently examined by counting the average spin pumpedper cycle when frequency and interdot capacitance are adjusted.
Show less - Date Issued
- 2012
- Identifier
- CFE0004334, ucf:49435
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004334
- Title
- Nanoelectronic Devices using Carbon Nanotubes and Graphene Electrodes: Fabrication and Electronic Transport Investigations.
- Creator
-
Kang, Narae, Khondaker, Saiful, Leuenberger, Michael, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Fabrication of high-performance electronic devices using the novel semiconductors is essential for developing future electronics which can be applicable in large-area, flexible and transparent displays, sensors and solar cells. One of the major bottlenecks in the fabrication of high-performance devices is a large interfacial barrier formation at metal/semiconductor interface originated from Schottky barrier and interfacial dipole barrier which causes inefficient charge injection at the...
Show moreFabrication of high-performance electronic devices using the novel semiconductors is essential for developing future electronics which can be applicable in large-area, flexible and transparent displays, sensors and solar cells. One of the major bottlenecks in the fabrication of high-performance devices is a large interfacial barrier formation at metal/semiconductor interface originated from Schottky barrier and interfacial dipole barrier which causes inefficient charge injection at the interface. Therefore, having a favorable contact at electrode/semiconductor is highly desirable for high-performance devices fabrication.In this dissertation, the fabrication of nanoelectronic devices and investigation of their transport properties using carbon nanotubes (CNTs) and graphene as electrode materials will be shown. I investigated two types of devices using (i) semiconducting CNTs, and (ii) organic semiconductors (OSC). In the first part of this thesis, I will demonstrate the fabrication of high-performance solution-processed highly enriched (99%) semiconducting CNT thin film transistors (s-CNT TFTs) using densely aligned arrays of metallic CNTs (m-CNTs) for source/drain electrodes. From the electronic transport measurements at room temperature, significant improvements of field-effect mobility, on-conductance, transconductance and current on/off ratio for m-CNT/s-CNT devices were found compared to control palladium (Pd contacted s-CNT devices. From the temperature dependent transport investigation, a lower Schottky barrier height for the m-CNT/s-CNT devices was found compared to the devices with control metal electrodes. The enhanced device performance can be attributed to the unique device geometry as well as strong ?- ? interaction at m-CNT/s-CNT interfaces. In addition, I also investigated s-CNT TFTs using reduced graphene oxide (RGO) electrodes.In the second part of my thesis, I will demonstrate high-performance organic field-effect transistors (OFETs) using different types of graphene electrodes. I show that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp2 fraction of RGO. The carbon sp2 fractions of RGO were varied by controlling the reduction time. When compared to control Pd electrodes, the mobility of the OFETs shows an improvement of ?200% for 61% sp2 fraction RGO, which further improves to ?500% for 80% RGO electrode. Similarly, I show that when the chemical vapor deposition (CVD) graphene film is used as electrodes in fabricating OFET, the better performance is observed in comparison to RGO electrodes. Our study suggests that, in addition to ?-? interaction at graphene/pentacene interface, the tunable electronic properties of graphene as electrode have a significant role in OFETs performance. For a fundamental understanding of the interface, we fabricated short-channel OFETs with sub-100nm channel length using graphene electrode. From the low temperature electronic transport measurements, a lower charge injection barrier was found compared to control metal electrode. The detailed investigations reported in this thesis clearly indicated that the use of CNT and graphene as electrodes can improve the performance of future nanoelectronic devices.
Show less - Date Issued
- 2015
- Identifier
- CFE0006039, ucf:50982
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006039
- Title
- Investigation of Optical and Electronic Properties of Au Decorated MoS2.
- Creator
-
Bhanu, Udai, Khondaker, Saiful, Leuenberger, Michael, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Achieving tunability of two dimensional (2D) transition metal dichalcogenides (TMDs) functions calls for the introduction of hybrid 2D materials by means of localized interactions with zero dimensional (0D) materials. A metal-semiconductor interface, as in gold (Au) - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science as it constitutes an outstanding platform to investigate optical and electronic properties due to charge transfer. The applied aspects...
Show moreAchieving tunability of two dimensional (2D) transition metal dichalcogenides (TMDs) functions calls for the introduction of hybrid 2D materials by means of localized interactions with zero dimensional (0D) materials. A metal-semiconductor interface, as in gold (Au) - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science as it constitutes an outstanding platform to investigate optical and electronic properties due to charge transfer. The applied aspects of such systems introduce new options for electronics, photovoltaics, detectors, catalysis, and biosensing. Here in this dissertation, we study the charge transfer interaction between Au nanoparticals and MoS2 flakes and its effect on Photoluminescence and electronic transport properties. The MoS2 was mechanically exfoliated from bulk single crystal. Number of layers in the flake was identified with the help of AFM and Raman Spectra. Au was deposited by physical vapor deposition method (PVD) in multiple steps to decorate MoS2 flakes.We first study the photoluminescence of pristine and Au decorated MoS2 and shows that in the presence of Au, the photoluminescence of MoS2 quenches significantly. We infer that the PL quenching can be attributed to a change in the electronic structure of the MoS2-Au system. The difference in Fermi level of a of MoS2 and Au results in a 0.4 eV energy level offset, which causes a band bending in the MoS2-Au hybrid. Upon illumination, the electrons in the excited state of MoS2 transfer to Au, leaving a hole behind, thus cause p-doping in MoS2. As electrons from MoS2 are transferred to Au, they do not decay back to their initial ground state, leading to PL quenching in the hybrid system.ivTo study the effect of Au deposition on electronic properties of ultra-thin and multilayers MoS2 flakes, we have fabricated MoS2 FETs from (1) ultra-thin sample (2-4 MoS2 layers) and (2) multilayers samples (more than 20 layers). After each deposition of Au, we measured the electrical characteristics of FET at room temperature. We show that the threshold voltage shifts towards the positive gate voltage as we increase the thickness of Au. This shift in threshold voltage is indicative of p doping of the MoS2. We further show that the field effect mobility of MoS2 FET decrease with Au thickness. We have quantitatively estimated the charge transferring from MoS2 to Au.
Show less - Date Issued
- 2015
- Identifier
- CFE0006025, ucf:51013
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006025
- Title
- Solving Constraint Satisfaction Problems with Matrix Product States.
- Creator
-
Pelton, Sabine, Mucciolo, Eduardo, Ishigami, Masa, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
In the past decade, Matrix Product State (MPS) algorithms have emerged as an efficient method of modeling some many-body quantum spin systems. Since spin system Hamiltonians can be considered constraint satisfaction problems (CSPs), it follows that MPS should provide a versatile framework for studying a variety of general CSPs. In this thesis, we apply MPS to two types of CSP. First, use MPS to simulate adiabatic quantum computation (AQC), where the target Hamiltonians are instances of a...
Show moreIn the past decade, Matrix Product State (MPS) algorithms have emerged as an efficient method of modeling some many-body quantum spin systems. Since spin system Hamiltonians can be considered constraint satisfaction problems (CSPs), it follows that MPS should provide a versatile framework for studying a variety of general CSPs. In this thesis, we apply MPS to two types of CSP. First, use MPS to simulate adiabatic quantum computation (AQC), where the target Hamiltonians are instances of a fully connected, random Ising spin glass. Results of the simulations help shed light on why AQC fails for some optimization problems. We then present the novel application of a modified MPS algorithm to classical Boolean satisfiability problems, specifically k-SAT and max k-SAT. By construction, the algorithm also counts solutions to a given Boolean formula (\#-SAT). For easy satisfiable instances, the method is more expensive than other existing algorithms; however, for hard and unsatisfiable instances, the method succeeds in finding satisfying assignments where other algorithms fail to converge.
Show less - Date Issued
- 2017
- Identifier
- CFE0006902, ucf:51713
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006902
- Title
- Predictive Modeling of Functional Materials for Catalytic and Sensor Applications.
- Creator
-
Rawal, Takat, Rahman, Talat, Chang, Zenghu, Leuenberger, Michael, Zou, Shengli, University of Central Florida
- Abstract / Description
-
The research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte...
Show moreThe research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte Carlo simulation, which help rationalize experimental observations, and ultimately lead to the rational design of materials for the electronic and energy-related applications. Focusing on the popular single-layer MoS2, I first show how its hybrid structure with 29-atom transition metal nanoparticles (M29 where M=Cu, Ag, and Au) can lead to composite catalysts suitable for oxidation reactions. Interestingly, the effect is found to be most pronounced for Au29 when MoS2 is defect-laden (S vacancy row). Second, I show that defect-laden MoS2 can be functionalized either by deposited Au nanoparticles or when supported on Cu(111) to serve as a cost-effective catalyst for methanol synthesis via CO hydrogenation reactions. The charge transfer and electronic structural changes in these sub systems lead to the presence of 'frontier' states near the Fermi level, making the systems catalytically active. Next, in the emerging area of single metal atom catalysis, I provide rationale for the viability of single Pd sites stabilized on ZnO(101 ?0) as the active sites for methanol partial oxidation, an important reaction for the production of H2. We trace its excellent activity to the modified electronic structure of the single Pd site as well as neighboring Zn cationic sites. With the DFT-calculated activation energy barriers for a large set of reactions, we perform ab-initio kMC simulations to determine the selectivity of the products (CO2 and H2). These findings offer an opportunity for maximizing the efficiency of precious metal atoms, and optimizing their activity and selectivity (for desired products). In related work on extended surfaces while trying to explain the Scanning Tunneling Microscopy images observed by our experimental collaborators, I discovered a new mechanism involved in the process of Ag vacancy formation on Ag(110), in the presence of O atoms which leads to the reconstruction and eventually oxidation of the Ag surface. In a similar vein, I was able to propose a mechanism for the orange photoluminescence (PL), observed by our experimental collaborators, of a coupled system of benzylpiperazine (BZP) molecule and iodine on a copper surface. Our results show that the adsorbed BZP and iodine play complimentary roles in producing the PL in the visible range. Upon photo-excitation of the BZP-I/CuI(111) system, excited electrons are transferred into the conduction band (CB) of CuI, and holes are trapped by the adatoms. The relaxation of holes into BZP HOMO is facilitated by its realignment. Relaxed holes subsequently recombine with excited electrons in the CB of the CuI film, thus producing a luminescence peak at ~2.1 eV. These results can be useful for forensic applications in detecting illicit substances.
Show less - Date Issued
- 2017
- Identifier
- CFE0006783, ucf:51813
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006783
- Title
- Theoretical Study of Laser Beam Quality and Pulse Shaping by Volume Bragg Gratings.
- Creator
-
Kaim, Sergiy, Zeldovich, Boris, Flitsiyan, Elena, Leuenberger, Michael, Likamwa, Patrick, University of Central Florida
- Abstract / Description
-
The theory of stretching and compressing of short light pulses by the chirped volume Bragg gratings (CBG) is reviewed based on spectral decomposition of short pulses and on the wavelength-dependent coupled wave equations. The analytic theory of diffraction efficiency of a CBG with constant chirp and approximate theory of time delay dispersion are presented. Based on those, we performed comparison of the approximate analytic results with the exact numeric coupled-wave modeling. We also study...
Show moreThe theory of stretching and compressing of short light pulses by the chirped volume Bragg gratings (CBG) is reviewed based on spectral decomposition of short pulses and on the wavelength-dependent coupled wave equations. The analytic theory of diffraction efficiency of a CBG with constant chirp and approximate theory of time delay dispersion are presented. Based on those, we performed comparison of the approximate analytic results with the exact numeric coupled-wave modeling. We also study theoretically various definitions of laser beam width in a given cross-section. Quality of the beam is characterized by the dimensionless beam propagation products (?x???_x)?? , which are different for each of the 21 definitions. We study six particular beams and introduce an axially-symmetric self-MFT (mathematical Fourier transform) function, which may be useful for the description of diffraction-quality beams. Furthermore, we discuss various saturation curves and their influence on the amplitudes of recorded gratings. Special attention is given to multiplexed volume Bragg gratings (VBG) aimed at recording of several gratings in the same volume. The best shape of a saturation curve for production of the strongest gratings is found to be the threshold-type curve. Both one-photon and two-photon absorption mechanism of recording are investigated. Finally, by means of the simulation software we investigate forced airflow cooling of a VBG heated by a laser beam. Two combinations of a setup are considered, and a number of temperature distributions and thermal deformations are obtained for different rates of airflows. Simulation results are compared to the experimental data, and show good mutual agreement.
Show less - Date Issued
- 2015
- Identifier
- CFE0005638, ucf:50210
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005638
- Title
- The effect of electron-hole pairs in semiconductor and topological insulator nanostructures on plasmon resonances and photon polarizations.
- Creator
-
Paudel, Hari, Leuenberger, Michael, Rahman, Talat, Saha, Haripada, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
The generation of electron-hole pairs in materials has great importance. In directbandgap semiconductor materials, the mechanism of radiative recombination of electron-holepairs leads to the emission of photons, which is the basis of Light Emitting Diodes(LEDs). The excitation of electron-hole pairs by absorption of photons is the active processin photodiodes, solar cells, and other semiconductor photodetector devices. In optoelectronicdevices such as optical switches which are based on...
Show moreThe generation of electron-hole pairs in materials has great importance. In directbandgap semiconductor materials, the mechanism of radiative recombination of electron-holepairs leads to the emission of photons, which is the basis of Light Emitting Diodes(LEDs). The excitation of electron-hole pairs by absorption of photons is the active processin photodiodes, solar cells, and other semiconductor photodetector devices. In optoelectronicdevices such as optical switches which are based on transmission and reflection of the photons,electron-hole pairs excitation is a key for the device performance. Diodes and transistorsare also great discoveries in electronics which rely on the generation and recombination ofelectron-hole pairs at p-n junctions. In three-dimensional topological insulators (3D TIs)materials nanostructures excitation of electron-hole pairs can be utilized for the quantummemory, quantum information and quantum teleportation. In two-dimensional (2D) layeredmaterials like graphene, MoS_2, MoSe_2, WS_2 and WSe_2 generation and recombination ofelectron hole pairs is main process at p-n junctions, infrared detectors and sensors.This PhD thesis is concerned with the physics of different types of electron-hole pairsin various materials, such as wide-bandgap semiconductors, 3D topological insulators, andplasmonic excitations in metallic nanostructures. The materials of interest are wide bandgap semiconductors such as TiO_2 , 3D TIs such as Pb_1?xSn_xTe and the 2D layered materials such as MoS_2 and MoO_3. We study the electronic and optical properties in bulk and nanostructures and find applications in the area of semiclassical and quantum information processing. One of the interesting applications we focus in this thesis is shift in surface plasmon resonance due to reduction in index of refraction of surrounding dielectric environment which inturns shifts the wavelength of surface plasmon resonance up to 125 nm for carrier density of10^22/cm^3. Employing this effect, we present a model of a light controlled plasmon switching using a hybrid metal-dielectric heterostructures.In 3D TIs nanostructures, the time reversible spin partners in the valence and conductionband can be coupled by a left and a right handed circular polarization of the light.Such coupling of light with electron-hole pair polarization provides an unique opportunityto utilize 3D TIs in quantum information processing and spintronics devices. We present a model of a 3D TI quantum dot made of spherical core-bulk heterostructure. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD.Due to excellent transport properties in single and multiple layers of 2D layeredmaterials, several efforts have demonstrated the possibility to engineer electronic and optoelectronic devices based on MoS_2. In this thesis, we focus on theoretical and experimental study of electrical property and photoluminescence tuning, both in a single-layer of MoS_2.We present theoretical analysis of experimental results from the point of view of stability of MoO_3 defects in MoS_2 single layer and bandstructures calculation. In experiment, the electrical property of a single layer of MoS_2 can be tuned from semiconducting to insulating regime via controlled exposure to oxygen plasma. The quenching of photoluminescence of asingle sheet of MoS_2 has also been observed upon exposure to oxygen plasmas. We calculatethe direct to indirect band gap transitions by going from MoS_2 single sheet to MoO_3 singlesheet during the plasma exposure, which is due to the formation of MoO_3 rich defect domainsinside a MoS_2 sheet.
Show less - Date Issued
- 2014
- Identifier
- CFE0005397, ucf:50454
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005397
- Title
- THEORETICAL AND NUMERICAL STUDIES OF PHASE TRANSITIONS AND ERROR THRESHOLDS IN TOPOLOGICAL QUANTUM MEMORIES.
- Creator
-
Jouzdani, Pejman, Mucciolo, Eduardo, Chang, Zenghu, Leuenberger, Michael, Abouraddy, Ayman, University of Central Florida
- Abstract / Description
-
This dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code.We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world....
Show moreThis dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code.We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world. We begin with a brief introduction to stabilizer codes. The stabilizer formalism of the theory of quantum error correction gives a well-defined description of quantum codes that is used throughout this dissertation. Then, we turn our attention to a quite new subject, namely, topological quantum codes. Topological quantum codes take advantage of the topological characteristics of a physical many-body system. The physical many-body systems studied in the context of topological quantum codes are of two essential natures: they either have intrinsic interaction that self-corrects errors, or are actively corrected to be maintainedin a desired quantum state. Examples of the former are the toric code and the unpaired Majorana, while an example for the latter is the surface code.A brief introduction and history of topological phenomena in condensed matter is provided. The unpaired Majorana and the Kitaev toy model are briefly explained. Later we introduce a spin model that maps onto the Kitaev toy model through a sequence of transformations. We show how this model is robust and tolerates local perturbations. The research on this topic, at the time of writing this dissertation, is still incomplete and only preliminary results are represented.As another example of passive error correcting codes with intrinsic Hamiltonian, the toric code is introduced. We also analyze the dynamics of the errors in the toric code known as anyons. We show numerically how the addition of disorder to the physical system underlying the toric code slows down the dynamics of the anyons. We go further and numerically analyze the presence of time-dependent noise and the consequent delocalization of localized errors.The main portion of this dissertation is dedicated to the surface code. We study the surface code coupled to a non-interacting bosonic bath. We show how the interaction between the code and the bosonic bath can effectively induce correlated errors. These correlated errors may be corrected up to some extend. The extension beyond which quantum error correction seems impossible is the error threshold of the code. This threshold is analyzed by mapping the effective correlated error model onto a statistical model. We then study the phase transition in the statistical model. The analysis is in two parts. First, we carry out derivation of the effective correlated model, its mapping onto a statistical model, and perform an exact numerical analysis. Second, we employ a Monte Carlo method to extend the numerical analysis to large system size.We also tackle the problem of surface code with correlated and single-qubit errors by an exact mapping onto a two-dimensional Ising model with boundary fields. We show how the phase transition point in one model, the Ising model, coincides with the intrinsic error threshold of the other model, the surface code.
Show less - Date Issued
- 2014
- Identifier
- CFE0005512, ucf:50314
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005512
- Title
- Entangled Photon Pairs in Disordered Photonic Lattices.
- Creator
-
Martin, Lane, Saleh, Bahaa, Abouraddy, Ayman, Christodoulides, Demetrios, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
Photonic lattices consisting of arrays of evanescently coupled waveguides fabricated with precisely controlled parameters have enabled the study of discrete optical phenomena, both classical and quantum, and the simulation of other physical phenomena governed by the same dynamics. In this dissertation, I have experimentally demonstrated transverse Anderson localization of classical light in arrays with off-diagonal coupling disorder and investigated theoretically and experimentally the...
Show morePhotonic lattices consisting of arrays of evanescently coupled waveguides fabricated with precisely controlled parameters have enabled the study of discrete optical phenomena, both classical and quantum, and the simulation of other physical phenomena governed by the same dynamics. In this dissertation, I have experimentally demonstrated transverse Anderson localization of classical light in arrays with off-diagonal coupling disorder and investigated theoretically and experimentally the propagation of entangled photon pairs through such disordered systems. I discovered a new phenomenon, Anderson co-localization, in which a spatially entangled photon pair in a correlated transversally extended state localizes in the correlation space, though neither photon localizes on its own. When the photons of a pair are in an anti-correlated state, they maintain their anti-correlation upon transmission through the disordered lattice, exhibiting Anderson anti-localization. These states were generated by use of parametric down conversion in a nonlinear crystal. The transition between the correlated and anti-correlated states was also explored by using a lens system in a configuration intermediate between imaging and Fourier transforming. In the course of this research, I discovered a curious aspect of light transmission through such disordered discrete lattices. An excitation wave of a single spatial frequency (transverse momentum) is transmitted through the system and is accompanied by another wave with the same spatial frequency but opposite sign, indicating some form of internal reflection facilitated by the disordered structure.
Show less - Date Issued
- 2014
- Identifier
- CFE0005527, ucf:50312
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005527
- Title
- Nanoplasmonics In Two-dimensional Dirac and Three-dimensional Metallic Nanostructure Systems.
- Creator
-
Safaei, Alireza, Chanda, Debashis, Leuenberger, Michael, Mucciolo, Eduardo, Tetard, Laurene, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Surface plasmons are collective oscillation of electrons which are coupled to the incident electric field. Excitation of surface plasmon is a route to engineer the behavior of light in nanometer length scale and amplifying the light-matter interaction. This interaction is an outcome of near-field enhancement close to the metal surface which leads to plasmon damping through radiative decay to outgoing photons and nonradiative decay inside and on the surface of the material to create an...
Show moreSurface plasmons are collective oscillation of electrons which are coupled to the incident electric field. Excitation of surface plasmon is a route to engineer the behavior of light in nanometer length scale and amplifying the light-matter interaction. This interaction is an outcome of near-field enhancement close to the metal surface which leads to plasmon damping through radiative decay to outgoing photons and nonradiative decay inside and on the surface of the material to create an electron-hole pair via interband or intraband Landau damping. Plasmonics in Dirac systems such as graphene show novel features due to massless electrons and holes around the Dirac cones. Linear band structure of Dirac materials in the low-momentum limit gives rise to the unprecedented optical and electrical properties. Electronical tunability of the plasmon resonance frequency through applying a gate voltage, highly confined electric field, and low plasmon damping are the other special propoerties of the Dirac plasmons. In this work, I will summarize the theoretical and experimental aspects of the electrostatical tunable systems made from monolayer graphene working in mid-infrared regime. I will demonstrate how a cavity-coupled nanopatterned graphene excites Dirac plasmons and enhances the light-matter interaction. The resonance frequency of the Dirac plasmons is tunable by applying a gate voltage. I will show how different gate-dielectrics, and the external conditions like the polarization and angle of incident light affect on the optical response of the nanostructure systems. I will then show the application of these nanodevices in infrared detection at room temperature by using plasmon-assisted hot carriers generation. An asymmetric nanopatterned graphene shows a high responsivity at room temperature which is unprecedented. At the end, I will demonstrate the properties of surface plasmons on 3D noble metals and its applications in light-funneling, photodetection, and light-focusing.
Show less - Date Issued
- 2019
- Identifier
- CFE0007904, ucf:52746
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007904
- Title
- Cavity-Coupled Plasmonic Systems for Enhanced Light-Matter Interactions.
- Creator
-
Vazquez-Guardado, Abraham, Chanda, Debashis, Christodoulides, Demetrios, Abouraddy, Ayman, Moharam, Jim, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
Light-matter interaction is a pivotal effect that involves the synergetic interplay of electromag- netic fields with fundamental particles. In this regard localized surface plasmons (LSP) arise from coherent interaction of the electromagnetic field with the collective oscillation of free electrons in confined sub-wavelength environments. Their most attractive properties are strong field en- hancements at the near field, highly inhomogeneous, peculiar temporal and spatial distributions and...
Show moreLight-matter interaction is a pivotal effect that involves the synergetic interplay of electromag- netic fields with fundamental particles. In this regard localized surface plasmons (LSP) arise from coherent interaction of the electromagnetic field with the collective oscillation of free electrons in confined sub-wavelength environments. Their most attractive properties are strong field en- hancements at the near field, highly inhomogeneous, peculiar temporal and spatial distributions and unique polarization properties. LSP systems also offer a unique playground for fundamental electromagnetic physics where micro-scale systemic properties can be studied in the macro-scale. These important properties and opportunities are brought up in this work where I study hybrid cavity-coupled plasmonic systems in which the weak plasmonic element is far-field coupled with the photonic cavity by properly tuning its phase. In this work I preset the fundamental understand- ing of such a complex systems from the multi-resonance interaction picture along experimental demonstration. Using this platform and its intricate near fields I further demonstrate a novel mech- anism to generate superchiral light: a field polarization property that adds a degree of freedom to light-matter interactions at the nanoscale exploited in advanced sensing applications and surface effect processes. Finally, the detection of non-chiral analytes, such as proteins, neurotransmit- ters or nanoparticles, and more complex chiral analytes, such as proteins and its conformation states, amino acids or chiral molecules at low concentrations is demonstrated in several biosensing applications. The accompanied experiential demonstrations were accomplished using the nanoim- printing technique, which places the cavity-coupled hybrid plasmonic system as a unique platform towards realistic applications not limited by expensive lithographic techniques.
Show less - Date Issued
- 2018
- Identifier
- CFE0007418, ucf:52708
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007418
- Title
- Electronic, Optical, and Magnetic Properties of Graphene and Single-Layer Transition Metal Dichalcogenides in the Presence of Defects.
- Creator
-
Khan, Mahtab, Leuenberger, Michael, Mucciolo, Eduardo, Saha, Haripada, Tetard, Laurene, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Two-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbonatoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also...
Show moreTwo-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbonatoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also observed in surface states of 3D topological insulators and quantum Hall edgestates. My first project deals with the two-dimensional Hong-Ou-Mandel (HOM) type interferenceexperiment for massless Dirac fermions in graphene and 3D topological insulators. Since masslessDirac fermions exhibit linear dispersion, similar to photons in vacuum, they can be used to observethe HOM interference intensity pattern as a function of the delay time between two massless Dirac fermions. My further projects and the major part of this dissertation deal with single-layer (SL) transition metal dichalcogenides (TMDCs), such as MoS$_2$, WS$_2$, MoSe$_2$ and WSe$_2$, which have recently emerged as a new family of two-dimensional (2D) materials with great interest, not only from the fundamental point of view, but also because of their potential application to ultrathin electronic and optoelectronic devices. In contrast to graphene, SL TMDCs are direct band semiconductors and exhibit large intrinsic spin-orbit coupling (SOC), originating from the d orbitals of transition metal atoms. Wafer-scale production of SL TMDCs is required for industrial applications. It has been shown that artificially grown samples of SL TMDCs through various experimental techniques, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and molecular beam epitaxy (MBE), are not perfect, instead certain type of imperfections such as point defects are always found to be present in the grown samples. Defects compromise the crystallinity of the sample, which results in reduced carrier mobility and deteriorated optical efficiency. However, defects are not always unwanted; in fact, defects can play an important role in tailoring electronic, optical, and magnetic properties of materials. Using Density functional theory we investigate the impact of point defects on the electronic, optical, and magnetic properties of SL TMDCs. First, we show that certain vacancy defects lead to localized defect states, which in turn give rise to sharp transitions in in-plane and out-of-plane optical susceptibilities of SL TMDCs. Secondly, we show that a naturally occurring antisite defect Mo$_S$ in PVD grown MoS$_2$ is magnetic in nature with a magneticmoment of 2$\mu_B$, and remarkably exhibit an exceptionally large atomic scale magnetic anisotropy energy (MAE) of ~ 500 eV. Both magnetic moment and MAE can be tuned by shifting the position of the Fermi level which can be achieved either by gate voltage or by chemical doping. Thirdly, we argue that the antisite defect Se$_W$ in WSe$_2$ leads to long lived localized excited states, which can explain the observed single quantum emitters in CVD grown WSe$_2$ samples, with potential application to quantum cryptography.
Show less - Date Issued
- 2018
- Identifier
- CFE0007030, ucf:52047
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007030
- Title
- Regolith-Based Construction Materials for Lunar and Martian Colonies.
- Creator
-
Grossman, Kevin, Seal, Sudipta, Florczyk, Stephen, Fang, Jiyu, Zhai, Lei, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
Humankind's ambitions of exploring our solar system and parts beyond depend heavily on our ability to collect resources from local environments at our destinations rather than bringing materials on the journey. This is a concept known as in-situ resource utilization (ISRU) and it is one that has been understood by every explorer and settler in the history of humankind. Regolith on the moon and Mars has been shown to be a particularly useful resource and has the ability to provide humans with...
Show moreHumankind's ambitions of exploring our solar system and parts beyond depend heavily on our ability to collect resources from local environments at our destinations rather than bringing materials on the journey. This is a concept known as in-situ resource utilization (ISRU) and it is one that has been understood by every explorer and settler in the history of humankind. Regolith on the moon and Mars has been shown to be a particularly useful resource and has the ability to provide humans with resources including water, oxygen, construction material, fabric, radiation shielding, metals, and may more. This dissertation focuses on construction materials derived from standard regolith simulant JSC-1A, including bricks, composites, metals and modified powder materials. Sintering processes with JSC-1A were studied to determine optimal heating profiles and resulting compressive strengths. It was determined that the temperature profiles have an optimal effect on smaller particle sizes due to the larger surface area to volume ratio of small particles and sintering being a surface event. Compressive strengths of sintered regolith samples were found to be as high as 38,000 psi, which offers large utility for martian or lunar colonies. This study also investigates a method for extracting metals from regolith known as molten regolith electrolysis. The alloy of the two major metallic components of regolith, iron and silicon, has been investigated as a structural metal for colonies and a potential feedstock for novel metallic 3D printers. Parallel to these efforts, a new additive manufacturing technique designed to print metal parts in low and zero gravity environments is developed. The mechanical properties from metal parts from this technique are examined and it is determined how the printing process determines a microstructure within the steel that impacts the utility of the technology.
Show less - Date Issued
- 2018
- Identifier
- CFE0007331, ucf:52144
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007331
- Title
- Wavelength scale resonant structures for integrated photonic applications.
- Creator
-
Weed, Matthew, Schoenfeld, Winston, Moharam, M., Likamwa, Patrick, Delfyett, Peter, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled...
Show moreAn approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models enables comb-like resonant clusters in systems that otherwise have no such regular resonant landscape (e.g. photonic crystal cavities). Through design, simulation, fabrication and test, the work presented here is a thorough validation for the future potential of coupled-resonator filters in frequency comb laser sources.
Show less - Date Issued
- 2013
- Identifier
- CFE0004957, ucf:49568
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004957
- Title
- Understanding the Role of Defects in the Radiation Response of Nanoceria.
- Creator
-
Kumar, Amit, Seal, Sudipta, Heinrich, Helge, Cho, Hyoung, Leuenberger, Michael, Zhai, Lei, Devanathan, Ram, University of Central Florida
- Abstract / Description
-
Nanoscale cerium oxide (nanoceria) have shown to possess redox active property , and has been widely studied for potential use in catalysis, chemical-mechanical planarization, bio-medical and solid oxide fuel cell (SOFC), etc. The redox state of nanoceria can be tuned by controlling the defects within the lattice and thus its physical and chemical properties. Perfect ceria lattice has fluorite structure and the research in last decade has shown that oxide and mixed oxide systems with...
Show moreNanoscale cerium oxide (nanoceria) have shown to possess redox active property , and has been widely studied for potential use in catalysis, chemical-mechanical planarization, bio-medical and solid oxide fuel cell (SOFC), etc. The redox state of nanoceria can be tuned by controlling the defects within the lattice and thus its physical and chemical properties. Perfect ceria lattice has fluorite structure and the research in last decade has shown that oxide and mixed oxide systems with pyrochlore and fluorite have better structural stability under high energy radiation. However, the current literature shows a limited number of studies on the effect of high energy radiation on nanoceria. This dissertation aims at understanding the phenomena occurring on irradiation of nanoceria lattice through experiments and atomistic simulation.At first, research was conducted to show the ability to control the defects in nanoceria lattice and understand the effect in tailoring its properties. The defect state of nanoceria was controlled by lower valence state rare earth dopant europium. Extensive materials characterization was done using high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy to understand the effect of dopant chemistry in modifying the chemical state of nanoceria. The defects originating in the lattice and redox state was quantified with increasing dopant concentration. The photoluminescence property of the control and doped nanoceria were evaluated with respect to its defect state. It was observed that defect plays an important role in modifying the photoluminescence property and that it can be tailored in a wide range to control the optical properties of nanoceria.Having seen the importance of defects in controlling the properties of nanoceria, further experiments were conducted to understand the effect of radiation in cerium oxide thin films of different crystallinity. The cerium oxide thin films were synthesized using oxygen plasma assisted molecular beam epitaxy (OPA-MBE) growth. The thin films were exposed to high energy radiation over a wide range of fluence (1013 to 1017 He+ ions/cm3). The current literature does not report the radiation effect in nanoceria in this wide range and upto this high fluence. The chemical state of the thin film was studied using in-situ XPS for each dose of radiation. It was found that radiation induced defects within both the ceria thin films and the valence state deviated further towards non-stoichiometry with radiation. The experimental results from cerium oxide thin film irradiation were studied in the light of simulation. Classical molecular dynamics and Monte Carlo simulation were used for designing the model ceria nanoparticle and studying the interaction of the lattice model with radiation. Electronic and nuclear stopping at the end of the range were modeled in ceria lattice using classical molecular dynamics to simulate the effect of radiation. It was seen that displacement damage was the controlling factor in defect production in ceria lattice. The simulation results suggested that nanosized cerium oxide has structural stability under radiation and encounters radiation damage due to the mixed valence states. A portion of the study will focus on observing the lattice stability of cerium with increasing concentration of the lower valence (Ce3+) within the lattice. With this current theoretical understanding of the role of redox state and defects during irradiation, the surfaces and bulk of nanoceria can be tailored for radiation stable structural applications.
Show less - Date Issued
- 2012
- Identifier
- CFE0004396, ucf:49375
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004396