Current Search: Mackie, Kevin (x)
View All Items
Pages
- Title
- Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods.
- Creator
-
Al Rumaithi, Ayad, Yun, Hae-Bum, Catbas, Necati, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
The effects of soil-foundation-structure (SFS) interaction and extreme loading on structural behaviors are important issues instructural dynamics. System identification is an important technique to characterize linear and nonlinear dynamic structures.The identification methods are usually classified into the parametric and non-parametric approaches based on how to modeldynamic systems. The objective of this study is to characterize the dynamic behaviors of two realistic civil...
Show moreThe effects of soil-foundation-structure (SFS) interaction and extreme loading on structural behaviors are important issues instructural dynamics. System identification is an important technique to characterize linear and nonlinear dynamic structures.The identification methods are usually classified into the parametric and non-parametric approaches based on how to modeldynamic systems. The objective of this study is to characterize the dynamic behaviors of two realistic civil engineeringstructures in SFS configuration and subjected to impact loading by comparing different parametric and non-parametricidentification results. First, SFS building models were studied to investigate the effects of the foundation types on the structural behaviors underseismic excitation. Three foundation types were tested including the fixed, pile and box foundations on a hydraulic shaketable, and the dynamic responses of the SFS systems were measured with the instrumented sensing devices.Parametric modal analysis methods, including NExT-ERA, DSSI, and SSI, were studied as linear identification methodswhose governing equations were modeled based on linear equations of motion. NExT-ERA, DSSI, and SSI were used toanalyze earthquake-induced damage effects on the global behavior of the superstructures for different foundation types.MRFM was also studied to characterize the nonlinear behavior of the superstructure during the seismic events. MRFM is anonlinear non-parametric identification method which has advantages to characterized local nonlinear behaviors using theinterstory stiffness and damping phase diagrams. The major findings from the SFS study are: *The investigated modal analysis methods identified the linearized version of the model behavior. The change of globalstructural behavior induced by the seismic damage could be quantified through the modal parameter identification. Thefoundation types also affected the identification results due to different SFS interactions. The identification accuracy wasreduced as the nonlinear effects due to damage increased. *MRFM could characterize the nonlinear behavior of the interstory restoring forces. The localized damage could bequantified by measuring dissipated energy of each floor. The most severe damage in the superstructure was observed withthe fixed foundation. Second, the responses of a full-scale suspension bridge in a ship-bridge collision accident were analyzed to characterizethe dynamic properties of the bridge. Three parametric and non-parametric identification methods, NExT-ERA, PCA andICA were used to process the bridge response data to evaluate the performance of mode decomposition of these methodsfor traffic, no-traffic, and collision loading conditions. The PCA and ICA identification results were compared with those ofNExT-ERA method for different excitation, response types, system damping and sensor spatial resolution. The major findings from the ship-bridge collision study include: *PCA was able to characterize the mode shapes and modal coordinates for velocity and displacement responses. Theresults using the acceleration were less accurate. The inter-channel correlation and sensor spatial resolution had significanteffects on the mode decomposition accuracy. *ICA showed the lowest performance in this mode decomposition study. It was observed that the excitation type andsystem characteristics significantly affected the ICA accuracy.
Show less - Date Issued
- 2014
- Identifier
- CFE0005567, ucf:50295
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005567
- Title
- Quantifying Ultra-high Performance Concrete Flexural System Mechanical Response.
- Creator
-
Xiao, Yulin, Mackie, Kevin, Catbas, Necati, Chopra, Manoj, Gordon, Ali, University of Central Florida
- Abstract / Description
-
The research and application of Ultra-high Performance Concrete (UHPC) has been developedsignificantly within the last 1-2 decades. Due to the specific property of high strength capacity, it is potential to be used in bridge deck system without shear reinforcement so that it provides even lighter self-weight of the deck. However, one of the shear component, dowel action, has not beenadequately investigated in the past. In this dissertation, a particular test was designed and carried out to...
Show moreThe research and application of Ultra-high Performance Concrete (UHPC) has been developedsignificantly within the last 1-2 decades. Due to the specific property of high strength capacity, it is potential to be used in bridge deck system without shear reinforcement so that it provides even lighter self-weight of the deck. However, one of the shear component, dowel action, has not beenadequately investigated in the past. In this dissertation, a particular test was designed and carried out to fully investigate the dowel action response, especially its contribution to shear resistance. In addition, research on serviceability and fatigue behaviors were expanded as well to delete the concern on other factors that may influence the application to the deck system. Both experimental and analytical methods including finite element modeling, OpenSees modeling and other extension studies were presented throughout the entire dissertation where required.
Show less - Date Issued
- 2014
- Identifier
- CFE0005563, ucf:50288
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005563
- Title
- Characterization of Impact Damage and Fiber Reinforced Polymer Repair Systems for Metallic Utility Poles.
- Creator
-
Johnson, Cara, Mackie, Kevin, Tatari, Mehmet, Chopra, Manoj, University of Central Florida
- Abstract / Description
-
Previous studies have demonstrated that the behavior of ber reinforced polymers(FRPs) bonded to metallic utility poles are governed by the following failure modes; yieldingof the metallic substrate, FRP tensile rupture, FRP compressive buckling, and debonding ofFRP from the substrate. Therefore, an in situ method can be devised for the repair of utilitypoles, light poles, and mast arms that returns the poles to their original service strength.This thesis investigates the eect of damage due to...
Show morePrevious studies have demonstrated that the behavior of ber reinforced polymers(FRPs) bonded to metallic utility poles are governed by the following failure modes; yieldingof the metallic substrate, FRP tensile rupture, FRP compressive buckling, and debonding ofFRP from the substrate. Therefore, an in situ method can be devised for the repair of utilitypoles, light poles, and mast arms that returns the poles to their original service strength.This thesis investigates the eect of damage due to vehicular impact on metallic poles,and the eectiveness of externally-bonded FRP repair systems in restoring their capacity.Damage is simulated experimentally by rapid, localized load application to pole sections,creating dents ranging in depth from 5 to 45% of the outer diameter. Four FRP compositerepair systems were selected for characterization and investigation due to their mechani-cal properties, ability to balance the system failure modes, and installation eectiveness.Bending tests are conducted on dented utility poles, both unrepaired and repaired.Nonlinear nite element models of dented and repaired pole bending behavior aredeveloped in MSC.Marc. These models show good agreement with experimental results,and can be used to predict behavior of full-scale repair system. A relationship between dentdepth and reduced pole capacity is developed, and FRP repair system recommendations arepresented.
Show less - Date Issued
- 2013
- Identifier
- CFE0004697, ucf:49872
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004697
- Title
- Flutter Stability of Shrouded Turbomachinery Cascades with Nonlinear Frictional Damping.
- Creator
-
Torkaman, Alex, Kauffman, Jeffrey L., Kapat, Jayanta, Raghavan, Seetha, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
Prediction of flutter in shrouded turbomachinery cascades is difficult due to i) coupling of aerodynamic drivers and structural dynamics of the cascade through shrouds, and ii) presence of nonlinear dry friction damping as a result of relative motion between adjacent shrouds. An analytical framework is developed in this dissertation to determine flutter stability of shrouded cascades with consideration of friction damping. This framework is an extension to the well-established energy method,...
Show morePrediction of flutter in shrouded turbomachinery cascades is difficult due to i) coupling of aerodynamic drivers and structural dynamics of the cascade through shrouds, and ii) presence of nonlinear dry friction damping as a result of relative motion between adjacent shrouds. An analytical framework is developed in this dissertation to determine flutter stability of shrouded cascades with consideration of friction damping. This framework is an extension to the well-established energy method, and it includes all contributing factors affecting stability of the cascade such as aerodynamic excitation and the stabilizing effects of dry friction damping caused by nonlinear contact forces between adjacent blades. This framework is developed to address a shortcoming in current analytical methods for flutter assessment in the industry. The influence of dry friction damping is typically not included due to complexity associated with nonlinearity, leading to uncertainty about exact threshold of flutter occurrence. The new analytical framework developed in this dissertation will increase the accuracy of flutter prediction method that is used for design and optimization of gas turbines.A hybrid time-frequency-time domain solution method is developed to solve aeroelastic equations of motion in both fluid and structural domains. Solution steps and their sequencing are optimized for computational efficiency with large scale realistic models and analytical accuracy in determining nonlinear friction force. Information exchange between different domains is used to couple aerodynamic and structural solutions together for a comprehensive and accurate analysis of shrouded cascade flutter problem in presence of nonlinear friction.Example application to a shrouded IGT blade shows that the influence of nonlinear friction damping in flutter suppression of an aerodynamically unstable cascade is significant. Comparison with engine test data shows that at observed vibration amplitudes in operation friction damping is sufficient to overcome aerodynamic excitation of this aerodynamically unstable cascade, resulting in overall cascade stability.
Show less - Date Issued
- 2018
- Identifier
- CFE0007379, ucf:52077
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007379
- Title
- Aeroelastic Investigation of a Circumferentially Varying Tip Gap in an Axial Compressor Rotor.
- Creator
-
Canon, Ornan, Kapat, Jayanta, Vasu Sumathi, Subith, Kauffman, Jeffrey, Mackie, Kevin, Kiesow, Hans-jurgen, University of Central Florida
- Abstract / Description
-
The tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially...
Show moreThe tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially varying tip gap, such as that produced by casing ovalization.For this project, the casing ovalization of an industrial gas turbine compressor was modeled using a frequency domain solver, without the need for a full wheel model. Both the vibratory and aerodynamic calculations were conducted in order to assess the aeroelastic response of the blade, as well as the aerodynamic impact. Engine test data was implemented in order to model realistic levels of casing ovalization and to calibrate the analytical models. Comparisons to a well-established method are also conducted to further calibrate the models. The calculations showed that for the gap variations imposed, the instantaneous effects aligned with expectations. However, the variation from small and large gaps had a canceling effect on each other over the cycle of oscillation around the engine.
Show less - Date Issued
- 2016
- Identifier
- CFE0006682, ucf:51926
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006682
- Title
- Seismic Response of Moment Resisting Frames Coupled with Rocking Walls.
- Creator
-
Aghagholizadeh, Mehrdad, Makris, Nicos, Catbas, Necati, Mackie, Kevin, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
This study investigates the inelastic response of yielding structures coupled with rocking walls. This topic is of major significance in the design of tall moment-resisting buildings, since during recent major earthquakes several tall, moment-resisting frames that had been designed in an accordance to the existing seismic code provisions, exhibited a weak-story failure. Utilization of this structural system can help reducing maximum story drifts, prevents weak story failure and minimize...
Show moreThis study investigates the inelastic response of yielding structures coupled with rocking walls. This topic is of major significance in the design of tall moment-resisting buildings, since during recent major earthquakes several tall, moment-resisting frames that had been designed in an accordance to the existing seismic code provisions, exhibited a weak-story failure. Utilization of this structural system can help reducing maximum story drifts, prevents weak story failure and minimize residual deformation of the structure. This study first examines different configurations of both stepping rocking walls and pinned rocking walls that have been reported in the literature.Next, effect of additional vertical tendons or vertical damping devices in maximum response of the system is investigated. This research first derives the nonlinear equations of motion of a yieldingoscillator coupled with a rocking wall and the dependability of the one-degree of freedom idealization is validated against the nonlinear time-history response analysis of a 9-story moment-resisting frame coupled with a rocking wall. This research finally concludes that, stepping wall suppresses peak and permanent displacements, with the heavier wall being most effective. In contrast, the pinned rocking wall increases in general the peak inelastic displacements and the permanent displacements. While, the coupling of weak building frames with rocking walls is an efficient strategy that controls inelastic deformations by enforcing a uniform interstory-drift distribution, therefore, avoiding mid-story failures, the study shows that even for medium-rise buildings the effect of vertical tendons on the inelastic structural response is marginal, except for increasing the vertical reactions at the pivoting points of the rocking wall. Additionally, The SDOF idealization presented in this study compares satisfactory with finite-element analysis of a 9-story steel SAC building coupled with a stepping rocking wall; therefore, the SDOF idealization can be used with confidence for preliminary analysis and design.
Show less - Date Issued
- 2018
- Identifier
- CFE0007301, ucf:52157
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007301
- Title
- Seepage and Stability Analysis of the Earth Dams under Drawdown Conditions by using the Finite Element Method.
- Creator
-
Al-Labban, Salama, Chopra, Manoj, Mackie, Kevin, Wang, Dingbao, Elshennawy, Ahmad, University of Central Florida
- Abstract / Description
-
One of the major concerns in the behavior of an earth dam is the change in the exit gradient and the impact on the slope stability under drawdown conditions. Drawdown can cause increased seepage forces on the upstream slope which may result in the movement of soil particles in the flow direction and cause erosion problems. In this research, a numerical approach, based on the finite element method (FEM) is used to analyze the seepage through the dam and its foundation to study exit gradients...
Show moreOne of the major concerns in the behavior of an earth dam is the change in the exit gradient and the impact on the slope stability under drawdown conditions. Drawdown can cause increased seepage forces on the upstream slope which may result in the movement of soil particles in the flow direction and cause erosion problems. In this research, a numerical approach, based on the finite element method (FEM) is used to analyze the seepage through the dam and its foundation to study exit gradients and slope stability under both steady-state and transient conditions. The results show that a central core is important in reducing the flux through the dam. Constructing a cutoff under the core further increases the efficiency of the core and lowers the phreatic line. However, it is seen that the submerged weight increases when the earth dam with a core or with a complete cutoff which causes higher water flux to flow out of the dam under the drawdown condition. The exit gradient at the upstream slope may reach critical levels and cause failure of the dam due to erosion. Adding an upstream filter is studied as a possible solution to this problem. Two configurations of the filters are modeled and the slope filter configuration performed best in reducing the exit gradient at the upstream face. A low permeability core with a cutoff increases deformation of the soil because of increased saturated areas in the upstream region. The factor of safety of the slope is also reduced because of the increased buoyancy of the soil at the upstream side of the dam. The soil properties of the upstream filter have a significant influence on the slope stability against sliding. An upstream slope filter increases the stability of the slope while a central filter decreases it.
Show less - Date Issued
- 2018
- Identifier
- CFE0007303, ucf:52167
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007303
- Title
- Monitoring and Modeling to Estimate Hydrogen Sulfide Emissions and Dispersion from Florida Construction and Demolition Landfills to Construct Odor Buffering Distances.
- Creator
-
Bolyard, Steven, Cooper, Charles, Mackie, Kevin, Randall, Andrew, Zhang, Husen, University of Central Florida
- Abstract / Description
-
Emissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida's population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide...
Show moreEmissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida's population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide them with an objective and scientifically defensible means to establish odor buffer zones around C & D landfills. A technique for estimating methane (and odorous gas) emissions from municipal solid waste (MSW) landfills was recently developed by researchers at the University of Central Florida. This technique was based on measuring hundreds of ambient methane concentrations near the surface of the landfill, and combining that data with matrix inversion mathematics to back-solve the dispersion equations. The technique was fully documented in two peer-reviewed journal articles. This project extends that methodology. In this work the author measured ambient H2S concentrations at various locations in a C & D landfill, and applied those same matrix inversion techniques to determine the H2S emission rates from the landfill. The emission rates were then input into the AERMOD dispersion model to determine H2S odor buffer distances around the landfill.Three sampling trips to one C & D landfill were undertaken, data were taken, and the modeling techniques were applied. One problem encountered was that H2S emissions from C & D landfills are typically about 1000 times smaller than methane emissions (from MSW landfills). Thus, H2S ambient concentrations often are near the detection limits of the instruments, and the data may not be as reliable. However, this approach could be used for any particular C & D landfill if the appropriate amount of data were available to characterize its emissions with some certainty. The graphical tool developed in this work shows isopleths of (")H2S(") concentrations at various distances, and color codes the isopleths into a (")green-yellow-red(") scheme (analogous to a traffic signal) that depicts zones where private landowners likely will not detect odors, where they may experience some odors, or where they likely will experience odors. The (")likelihood(") can be quantified by selecting the Nth highest hourly concentrations in one year to form the plot. In this study, N was conservatively selected as 8. Requiring that concentrations be at or below the 8th highest concentration in a year corresponds to a 99.9% probability of not exceeding that concentration at that distance in any future year. The graphical tool can be applied to any C & D landfill but each landfill is different. So this technique depends on having a fairly good estimate of the rate of emissions of H2S from the landfill in question, and at least one year's worth of hourly meteorological data (wind speed, direction, and stability class) that is representative of the landfill location. The meteorological data can be obtained with relative ease for most locations in Florida; however, the emission data must be obtained from on-site measurements for any given landfill.
Show less - Date Issued
- 2012
- Identifier
- CFE0004272, ucf:52879
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004272
- Title
- Mechanistic Behavior of UHPC and UHPC Composite Structural Components.
- Creator
-
Al-Ramahee, Munaf, Mackie, Kevin, Makris, Nicos, Nam, Boo Hyun, Gou, Jihua, University of Central Florida
- Abstract / Description
-
The resistance of reinforced concrete is mobilized through the composite action of two materials with different mechanical behaviors and physical features. Enabling the composite action requires a transfer mechanism between the concrete and the reinforcement which is referred to as bond. The bond model can be defined as a traction-slip relation tangent to the interface. The bond strength between different types of concrete, internal reinforcement, and external reinforcement has been of...
Show moreThe resistance of reinforced concrete is mobilized through the composite action of two materials with different mechanical behaviors and physical features. Enabling the composite action requires a transfer mechanism between the concrete and the reinforcement which is referred to as bond. The bond model can be defined as a traction-slip relation tangent to the interface. The bond strength between different types of concrete, internal reinforcement, and external reinforcement has been of interest to structural engineers for decades. Experimental tests have been carried out to validate the existing bond models and introduce new bond models for special cases of concrete or reinforcement. The effect of various parameters on the bond stress, such as bar diameter, concrete compressive strength, presence of fibers, cyclic loading, etc. have been investigated. However, little attention has been directed to the contribution of normal (to the interface) stress and state of stress of the substrate layer on the mechanical response of the interface. Since the state of stress (tangential, normal, and substrate) within each type of experimental test is different, the resulting bond models are not consistent.Behavior of ultra-high performance concrete (UHPC) composite flexural members are studied using experimental, analytical, and numerical approaches in this research. A new bond-slip model is proposed that contains an explicit representation of the normal stress and constitutive model of the substrate. The parameters of the model were calibrated from beam and pullout tests using UHPC and HSS. The calibrated results showed consistency in the material point behavior between the pullout and beam test although the states of stress were different. The effect of the normal force was verified throughout a numerical model compared with experimental flexural tests. Single and double lap shear tests were carried out for UHPC and FRP, and parameters of the bilinear model were calibrated and used in the finite element model of the new composite deck.A new lightweight composite deck system is proposed that uses fiber reinforced polymers (FRP) bonded to UHPC using vacuum-assisted resin transfer molding. The high-performance deck system has application in deck design and replacement for bridges with weight restrictions as well as for accelerated bridge construction. Results show the deck satisfies strength and serviceability criteria under monotonic load. The bond strength between the UHPC and the glass fiber reinforced polymers (GFRP) plays a significant role in the performance of the proposed deck and controls the behavior of the system. However, live loads on bridges are inherently cyclic and therefore research on serviceability and fatigue behavior of UHPC and UHPC composite members were carried out. The UHPC beams were strengthened using glass GFRP plates on compression side to obtain data that could be utilized for the future design. The effect of fatigue loading on the interfacial shear stress between UHPC and GFRP was also investigated and it is found to be minor under low load level. However, a noticeable progression in the interfacial shear stress was found for the higher load ratio.
Show less - Date Issued
- 2016
- Identifier
- CFE0006431, ucf:51464
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006431
- Title
- POLYURETHANE FIBER REINFORCED POLYMER STRENGTHENING OF SHEAR DEFICIENT REINFORCED CONCRETE BEAMS.
- Creator
-
Al-Lebban, Yasir, Mackie, Kevin, Chopra, Manoj, Makris, Nicos, Gou, Jihua, University of Central Florida
- Abstract / Description
-
The use of externally-bonded fiber-reinforced polymer (FRP) composites has been established as an effective means for the strengthening of shear-deficient reinforced concrete (RC) flexural members. Epoxy-based wet layup systems were predominantly employed in previous studies. In this study, carbon FRP pre-impregnated with polyurethane resin is utilized in strengthening shear-deficient RC beams and compared to an epoxy resin. Fourteen small-scale (96 in span, 6 in width, and 12 in height) and...
Show moreThe use of externally-bonded fiber-reinforced polymer (FRP) composites has been established as an effective means for the strengthening of shear-deficient reinforced concrete (RC) flexural members. Epoxy-based wet layup systems were predominantly employed in previous studies. In this study, carbon FRP pre-impregnated with polyurethane resin is utilized in strengthening shear-deficient RC beams and compared to an epoxy resin. Fourteen small-scale (96 in span, 6 in width, and 12 in height) and five large-scale (132 in span, 12 in width, and 17 in height) flexural specimens were tested, considering FRP system type (polyurethane versus epoxy), size effect, shear span-to-depth ratio, FRP configuration (U-wraps versus side bonding), and FRP scheme (sheets versus strips with 45o or 90o). Experimental strength testing under four-point loading demonstrated similar or enhanced shear capacity when strengthening by the polyurethane compared to the epoxy composite systems.The shear behavior of polyurethane-based FRP composite system is investigated in this research using analytical and numerical approaches. A closed-form mechanics-based analytical model, utilizing the principle of effective FRP stress and upper-bound theorem, illustrated that the shear behavior and debonding mechanism were dependent on both FRP composite and bond characteristics. The analytical model is expressed in terms of shear crack opening crossed by the FRP laminate and gives good agreement with experimental results. The finite element analysis (FEA) model shows that the stresses in the FRP are not in single direction as in the coupon tests, and the biaxial stress states should be taken into consideration.The structural behavior of RC members strengthened with externally-bonded FRP composites is mobilized through the composite action technique. Bond stress can be defined as the shear stress acting in the interface between FRP and concrete. It is of crucial importance to evaluate the failure mode behavior. Debonding (loss of adhesion) failure is one of the most common modes of failure encountered in shear strengthening RC members in practice. Numerous constitutive bond-slip models have been proposed and derived numerically and mathematically based on experimental data with an assumption that the FRP width bp is taken as a variable and all stresses or strains at the same longitudinal coordinate (L direction) are uniform. No attention has been given to study the bond states of stress which are mainly altered by the inclined shear cracks in concrete. A new bond-slip law was proposed to address the biaxial two-dimensional (2D) states of stress problem. Numerical solution by finite difference (FD) was conducted to solve four partial differential equations per node (2 for FRP and 2 for concrete in each direction) with appropriate boundary conditions to obtain the stresses, slips, and strains based on the proposed bond-slip model. A new experimental setup was proposed to represent the 2D bond-slip model by lap shear tests in both directions by laminating two perpendicular strips on concrete blocks with the proposed strain profile. Experimental calibration has been carried out by using nonlinear least-squares regression (fitting) of the experimental strain data with the numerical FD equations to obtain the bond-slip parameters for the 2D FRP-to-concrete polyurethane interface system.
Show less - Date Issued
- 2017
- Identifier
- CFE0006852, ucf:51737
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006852
- Title
- Computer Vision Based Structural Identification Framework for Bridge Health Mornitoring.
- Creator
-
Khuc, Tung, Catbas, Necati, Oloufa, Amr, Mackie, Kevin, Zaurin, Ricardo, Shah, Mubarak, University of Central Florida
- Abstract / Description
-
The objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle...
Show moreThe objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using full non-contact approach using video/image processing, c) image-based structural identification using input-output measurements and new damage indicators. The input (loading) data due vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing computer vision algorithms (detection, classification, and localization of objects) based on the video images of vehicles. Meanwhile, the output data as structural displacements are also obtained by defining and tracking image key-points of measurement locations. Subsequently, the input and output data sets are analyzed to construct novel types of damage indicators, named Unit Influence Surface (UIS). Finally, the new damage detection and localization framework is introduced that does not require a network of sensors, but much less number of sensors.The main research significance is the first time development of algorithms that transform the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge assessment within the context of Structural Identification with input and output characterization. The study exploits the unique attributes of computer vision systems, where the signal is continuous in space. This requires new adaptations and transformations that can handle computer vision data/signals for structural engineering applications. This research will significantly advance current sensor-based structural health monitoring with computer-vision techniques, leading to practical applications for damage detection of complex structures with a novel approach. By using computer vision algorithms and cameras as special sensors for structural health monitoring, this study proposes an advance approach in bridge monitoring through which certain type of data that could not be collected by conventional sensors such as vehicle loads and location, can be obtained practically and accurately.
Show less - Date Issued
- 2016
- Identifier
- CFE0006127, ucf:51174
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006127
- Title
- Uncertainty treatment in performance based seismic assessment of typical bridge classes in United States.
- Creator
-
Mehdizadeh Nasrabadi, Mohammad, Mackie, Kevin, Catbas, Necati, Yun, Hae-Bum, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Bridge networks are expensive and complex infrastructures and are essential components of today's transportation systems. Despite the advancement in computer aided modeling and increasing the computational power which is increasing the accessibility for developing the fragility curves of bridges, the complexity of the problem and uncertainties involved in fragility analysis of the bridge structures in addition to difficulties in validating the results obtained from the analysis requires...
Show moreBridge networks are expensive and complex infrastructures and are essential components of today's transportation systems. Despite the advancement in computer aided modeling and increasing the computational power which is increasing the accessibility for developing the fragility curves of bridges, the complexity of the problem and uncertainties involved in fragility analysis of the bridge structures in addition to difficulties in validating the results obtained from the analysis requires precaution in utilization of the results as a decision making tool. The main focus of this research is to address, study and treatment of uncertainties incorporated in various steps of performance based assessments (PBA) of the bridge structures. In this research the uncertainties is divided into three main categories. First, the uncertainties that come from ground motions time and frequency content alteration because of scarcity of the recorded ground motions in the database. Second, uncertainties associated in the modeling and simulation procedure of PBA, and third uncertainties originated from simplistic approach and methods utilized in the conventional procedure of PBA of the structures. Legitimacy of the scaling of ground motions is studied using the response of several simple nonlinear systems to amplitude scaled ground motions suites. Bias in the response obtained compared to unscaled records for both as recorded and synthetic ground motions.Results from this section of the research show the amount of the bias is considerable and can significantly affect the outcome of PBA. The origin of the bias is investigated and consequently a new metric is proposed to predict the bias induced by ground motion scaling without nonlinear analysis. Results demonstrate that utilizing the predictor as a scaling parameter can significantly reduce the bias for various nonlinear structures. Therefore utilizing the new metric as the intensity measuring parameter of the ground motions is recommended in PBA. To address the uncertainties associated in the modeling and simulation, MSSS concrete girder bridge class were selected due to the frequency of the construction in USCS region and lack of seismic detailing. A large scale parameters screening study is performed using Placket-Burman experimental design that considers a more complete group of parameters to decrease the computational expense of probabilistic study of the structure's seismic response. Fragility analysis for MSSS bridge is performed and the effect of removing the lesser important parameters the probabilistic demand model was investigated. This study reveals parameters reduction based on screening study techniques can be utilized to increase efficiency in fragility analysis procedure without compromising the accuracy of the outcome. The results from this study also provides more direct information on parameter reduction for PBA as well as provide insight into where future investments into higher fidelity finite element and constitutive models should be targeted. Conventional simplistic PBA approach does not account for the fundamental correlation between demand and capacity models. A more comprehensive PBA approach is presented and fragility analysis is performed with implementation of a new formulation in the component fragility analysis for MSSS bridge class and the outcome is compared with the one from conventional procedure. The results shows the correlation between demand and capacity affects the outcome of PBA and the fragility functions variation is not negligible. Therefore using the presented approach is necessary when accuracy is needed.
Show less - Date Issued
- 2014
- Identifier
- CFE0005531, ucf:50309
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005531
- Title
- The Effects of Assumption on Subspace Identification Methods Using Simulation and Experimental Data.
- Creator
-
Kim, Yoonhwak, Yun, Hae-Bum, Catbas, Fikret, Mackie, Kevin, Nam, Boo Hyun, Behal, Aman, University of Central Florida
- Abstract / Description
-
In the modern dynamic engineering field, experimental dynamics is an important area of study. This area includes structural dynamics, structural control, and structural health monitoring. In experimental dynamics, methods to obtain measured data have seen a great influx of research efforts to develop an accurate and reliable experimental analysis result. A technical challenge is the procurement of informative data that exhibits the desired system information. In many cases, the number of...
Show moreIn the modern dynamic engineering field, experimental dynamics is an important area of study. This area includes structural dynamics, structural control, and structural health monitoring. In experimental dynamics, methods to obtain measured data have seen a great influx of research efforts to develop an accurate and reliable experimental analysis result. A technical challenge is the procurement of informative data that exhibits the desired system information. In many cases, the number of sensors is limited by cost and difficulty of data archive. Furthermore, some informative data has technical difficulty when measuring input force and, even if obtaining the desired data were possible, it could include a lot of noise in the measuring data. As a result, researchers have developed many analytical tools with limited informative data. Subspace identification method is used one of tools in these achievements.Subspace identification method includes three different approaches: Deterministic Subspace Identification (DSI), Stochastic Subspace Identification (SSI), and Deterministic-Stochastic Subspace Identification (DSSI). The subspace identification method is widely used for fast computational speed and its accuracy. Based on the given information, such as output only, input/output, and input/output with noises, DSI, SSI, and DSSI are differently applied under specific assumptions, which could affect the analytical results. The objective of this study is to observe the effect of assumptions on subspace identification with various data conditions. Firstly, an analytical simulation study is performed using a six-degree-of-freedom mass-damper-spring system which is created using MATLAB. Various conditions of excitation insert to the simulation test model, and its excitation and response are analyzed using the subspace identification method. For stochastic problems, artificial noise is contained to the excitation and followed the same steps. Through this simulation test, the effects of assumption on subspace identification are quantified.Once the effects of the assumptions are studied using the simulation model, the subspace identification method is applied to dynamic response data collected from large-scale 12-story buildings with different foundation types that are tested at Tongji University, Shanghai, China. Noise effects are verified using three different excitation types. Furthermore, using the DSSI, which has the most accurate result, the effect of different foundations on the superstructure are analyzed.
Show less - Date Issued
- 2013
- Identifier
- CFE0004703, ucf:49822
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004703
- Title
- Multi-Level Safety Performance Functions for High Speed Facilities.
- Creator
-
Ahmed, Mohamed, Abdel-Aty, Mohamed, Radwan, Ahmed, Al-Deek, Haitham, Mackie, Kevin, Pande, Anurag, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
High speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the...
Show moreHigh speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the safety of these high speed facilities to ensure better and efficient operation. Safety problems could be assessed through several approaches that can help in mitigating the crash risk on long and short term basis. Therefore, the main focus of the research in this dissertation is to provide a framework of risk assessment to promote safety and enhance mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were developed at the aggregate level using historical crash data and the corresponding exposure and risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were developed at the disaggregate level utilizing real-time weather data collected from meteorological stations located at the freeway section as well as traffic flow parameters collected from different detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to turbulent traffic conditions and their interactions with other risk factors.In this study, two main datasets were obtained from two different regions. Those datasets comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic parameters as well as real-time weather and traffic data.At the aggregate level, Bayesian hierarchical models with spatial and random effects were compared to Poisson models to examine the safety effects of roadway geometrics on crash occurrence along freeway sections that feature mountainous terrain and adverse weather. At the disaggregate level; a main framework of a proactive safety management system using traffic data collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. Different statistical techniques were implemented. These techniques ranged from classical frequentist classification approaches to explain the relationship between an event (crash) occurring at a given time and a set of risk factors in real time to other more advanced models. Bayesian statistics with updating approach to update beliefs about the behavior of the parameter with prior knowledge in order to achieve more reliable estimation was implemented. Also a relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was utilized to calibrate several models utilizing different datasets collected from mixed detection systems as well as real-time meteorological stations. The results from this study suggest that both levels of analyses are important, the aggregate level helps in providing good understanding of different safety problems, and developing policies and countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time safety functions help toward more proactive traffic management system that will not only enhance the performance of the high speed facilities and the whole traffic network but also provide safer mobility for people and goods. In general, the proposed multi-level analyses are useful in providing roadway authorities with detailed information on where countermeasures must be implemented and when resources should be devoted. The study also proves that traffic data collected from different detection systems could be a useful asset that should be utilized appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. The overall proposed framework can maximize the benefit of the existing archived data for freeway authorities as well as for road users.
Show less - Date Issued
- 2012
- Identifier
- CFE0004508, ucf:49274
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004508
- Title
- Structural Identification through Monitoring, Modeling and Predictive Analysis under Uncertainty.
- Creator
-
Gokce, Hasan, Catbas, Fikret, Chopra, Manoj, Mackie, Kevin, Yun, Hae-Bum, DeMara, Ronald, University of Central Florida
- Abstract / Description
-
Bridges are critical components of highway networks, which provide mobility and economical vitality to a nation. Ensuring the safety and regular operation as well as accurate structural assessment of bridges is essential. Structural Identification (St-Id) can be utilized for better assessment of structures by integrating experimental and analytical technologies in support of decision-making. St-Id is defined as creating parametric or nonparametric models to characterize structural behavior...
Show moreBridges are critical components of highway networks, which provide mobility and economical vitality to a nation. Ensuring the safety and regular operation as well as accurate structural assessment of bridges is essential. Structural Identification (St-Id) can be utilized for better assessment of structures by integrating experimental and analytical technologies in support of decision-making. St-Id is defined as creating parametric or nonparametric models to characterize structural behavior based on structural health monitoring (SHM) data. In a recent study by the ASCE St-Id Committee, St-Id framework is given in six steps, including modeling, experimentation and ultimately decision making for estimating the performance and vulnerability of structural systems reliably through the improved simulations using monitoring data. In some St-Id applications, there can be challenges and considerations related to this six-step framework. For instance not all of the steps can be employed; thereby a subset of the six steps can be adapted for some cases based on the various limitations. In addition, each step has its own characteristics, challenges, and uncertainties due to the considerations such as time varying nature of civil structures, modeling and measurements. It is often discussed that even a calibrated model has limitations in fully representing an existing structure; therefore, a family of models may be well suited to represent the structure's response and performance in a probabilistic manner.The principle objective of this dissertation is to investigate nonparametric and parametric St-Id approaches by considering uncertainties coming from different sources to better assess the structural condition for decision making. In the first part of the dissertation, a nonparametric St-Id approach is employed without the use of an analytical model. The new methodology, which is successfully demonstrated on both lab and real-life structures, can identify and locate the damage by tracking correlation coefficients between strain time histories and can locate the damage from the generated correlation matrices of different strain time histories. This methodology is found to be load independent, computationally efficient, easy to use, especially for handling large amounts of monitoring data, and capable of identifying the effectiveness of the maintenance. In the second part, a parametric St-Id approach is introduced by developing a family of models using Monte Carlo simulations and finite element analyses to explore the uncertainty effects on performance predictions in terms of load rating and structural reliability. The family of models is developed from a parent model, which is calibrated using monitoring data. In this dissertation, the calibration is carried out using artificial neural networks (ANNs) and the approach and results are demonstrated on a laboratory structure and a real-life movable bridge, where predictive analyses are carried out for performance decrease due to deterioration, damage, and traffic increase over time. In addition, a long-span bridge is investigated using the same approach when the bridge is retrofitted. The family of models for these structures is employed to determine the component and system reliability, as well as the load rating, with a distribution that incorporates various uncertainties that were defined and characterized. It is observed that the uncertainties play a considerable role even when compared to calibrated model-based predictions for reliability and load rating, especially when the structure is complex, deteriorated and aged, and subjected to variable environmental and operational conditions. It is recommended that a family-of-models approach is suitable for structures that have less redundancy, high operational importance, are deteriorated, and are performing under close capacity and demand levels.
Show less - Date Issued
- 2012
- Identifier
- CFE0004232, ucf:48997
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004232