Current Search: Mohamed, Abdel-Aty (x)
View All Items
Pages
- Title
- Impact of Dynamic Message Signs on Driver Behavior Under Reduced Visibility Conditions.
- Creator
-
Selby, Ryan, Abdel-Aty, Mohamed, Eluru, Naveen, Lee, JaeYoung, University of Central Florida
- Abstract / Description
-
Fog along roadways is a dangerous hazard that leads to crashes resulting from limited visibility. Low visibility gives drivers less time to react to potential obstacles that can suddenly appear and require immediate action. To solve this issue, early warning systems involving Dynamic Message Signs or other types of devices are used to alert drivers of the impending visibility condition so that they are prepared. This research focuses on testing the effectiveness of one form of warning systems...
Show moreFog along roadways is a dangerous hazard that leads to crashes resulting from limited visibility. Low visibility gives drivers less time to react to potential obstacles that can suddenly appear and require immediate action. To solve this issue, early warning systems involving Dynamic Message Signs or other types of devices are used to alert drivers of the impending visibility condition so that they are prepared. This research focuses on testing the effectiveness of one form of warning systems to investigate how it impacts driver behavior in foggy conditions. To accomplish this objective, a simulation study is developed to test variables of interest including: Roadway Type, Fog Level, DMS Presence, Beacon Presence, Traffic Volume, and DMS Message Provided. Using a factorial design, 24 scenarios are created by randomizing the variables listed using statistical software to be tested on 72 volunteer participants. Using a NADS MiniSim Driving Simulator, the participants driving behavior is recorded including speed and breaking behavior under an initial clear condition followed by a reduced visibility fog condition. From demographics, drivers age 35 and over consistently showed a higher likelihood of speed reduction between clear and fog conditions with overall reduction increasing with age. This is seen when looking at the mean change in speed based on driver age where young drivers (18-25 yrs) reduced speeds by 7MPH, older drivers (35-45 yrs) reduced by 12MPH, and elder drivers (65+ yrs) reduced by 17MPH. The more often a person drove and those that were educated at a graduate level also showed a higher chance of speed reductions. This demonstrates the impact of experience and exposure to driving performance under reduced visibility conditions. Those who recently drove under fog conditions or learned to drive in Florida were found to be less likely to reduce their speeds when entering the fog. This is attributed to these drivers being confident or familiar with the environment resulting in risky driving behavior. For the scenario variables, it is determined that the type of roadway a driver travels plays a major role in how much speed reduction occurs and thus how much a driver decelerates when entering a low visibility environment. On average, drivers traversed the fog zone at 50MPH with the lowest travel speed being 30MPH. Since the speed limit on the freeway is 5MPH higher than the arterial, drivers' traveling along this road are noted to decelerate at higher rates to achieve this target speed. Additionally, DMS presence and message also provided an impact on the drivers' choice to decelerate and reduce travel speed within the fog condition. Under the most severe conditions, the probability of a driver reducing speed increases as the number of DMS present increases. Additionally, when a DMS presents a warning and specifies the action that a driver should take, in this case 'reduce speed,' greater speed reductions and decelerations are observed and are more likely to occur. Interestingly the number of DMS did not have a significant impact on driver behavior under every fog condition like the message presented did except in the most severe fog condition. Taking into account that 33% of drivers did not accurately remember the number of DMS encountered it can be concluded that the warning message itself is the most important aspect of the early warning system. This indicates that drivers accurately remember being directed to reduce speed whether they are given the advisement once or multiple times based on the number of DMS present. Further research into how the warning message is presented or worded could provide additional insight into the impact it can have on driver behavior. Since it is observed that drivers acknowledge the 'reduce speed' advisement, it is likely that specifying a specific speed limit could also warrant driver obedience. Additional testing and observation of driver reaction to larger traffic volumes and situations within the fog would also allow for further analysis of driver behavior under reduced visibility and the impact the early warning system has on their behavior.
Show less - Date Issued
- 2016
- Identifier
- CFE0006179, ucf:51116
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006179
- Title
- Joint modeling of traffic related crashes: a Copula based approch.
- Creator
-
Nashad, Tammam, Eluru, Naveen, Abdel-Aty, Mohamed, Radwan, Essam, University of Central Florida
- Abstract / Description
-
The study contributes to safety literature on transportation safety by employing copula based models for count frequency analysis at a macro-level. Most studies in the transportation safety area identify a single count variable (such as vehicular, pedestrian or bicycle crash counts) for a spatial unit and study the impact of exogenous variables. While the traditional count models perform adequately in the presence of a single count variable, it is necessary to modify these approaches to...
Show moreThe study contributes to safety literature on transportation safety by employing copula based models for count frequency analysis at a macro-level. Most studies in the transportation safety area identify a single count variable (such as vehicular, pedestrian or bicycle crash counts) for a spatial unit and study the impact of exogenous variables. While the traditional count models perform adequately in the presence of a single count variable, it is necessary to modify these approaches to examine multiple dependent variables for each study unit. To that extent, the current research effort contributes to literature by developing two multivariate models based on copula methodology. First, a copula based bivariate negative binomial model for pedestrian and bicyclist crash frequency analysis is developed. Second, a multivariate negative binomial model for crashes involving non-motorized road users, passenger cars, vans, light trucks and heavy trucks is proposed. The proposed approaches also accommodate for potential heterogeneity (across zones) in the dependency structure. The formulated models are estimated using traffic crash count data at the Statewide Traffic Analysis Zone (STAZ) level for the state of Florida for the years 2010 through 2012. The STAZ level variables considered in our analysis include exposure measures, socio-economic characteristics, road network characteristics and land use attributes. A policy analysis is also conducted along with a representation of hotspot identification to illustrate the applicability of the proposed model for planning purposes. The development of such spatial profiles will allow planners to identify high risk zones for screening and treatment purposes.
Show less - Date Issued
- 2016
- Identifier
- CFE0006153, ucf:51124
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006153
- Title
- Evaluation of Real World Toll Plazas Using Driving Simulation.
- Creator
-
Carroll, Kali, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
Toll plazas are becoming an essential part of the highway system, especially within the state of Florida. Many crashes reported on highways occur at toll plazas. A primary reason for many vehicle collisions happening at these facilities is the fact that each toll plaza agency has different design, signage and marking criteria. This, in turn, causes driver confusion and possible last minute weaving maneuvers. Even though the varying design of toll plazas is a clear highway safety factor,...
Show moreToll plazas are becoming an essential part of the highway system, especially within the state of Florida. Many crashes reported on highways occur at toll plazas. A primary reason for many vehicle collisions happening at these facilities is the fact that each toll plaza agency has different design, signage and marking criteria. This, in turn, causes driver confusion and possible last minute weaving maneuvers. Even though the varying design of toll plazas is a clear highway safety factor, research in the field is very limited but expanding. This study focuses on one toll plaza, in particular the Dean Mainline Toll Plaza, located in Orlando, Florida. The toll plaza is located directly between two roads that are in close proximity of each other. Because of this, the toll plaza is very close to the on- and off- ramps, which can be even more confusing and stressful for a driver entering or leaving the highway. The purpose of this study is to evaluate the safety and efficiency of the Dean Mainline Toll Plaza in order to make recommendations to improve or maintain the current toll plaza design, as well as potentially contribute to a nationally set design standard for toll plazas. Using the NADS miniSimTM Simulator, 72 subjects were recruited, and each subject was asked to drive 3 scenarios that were randomly selected from a pool of 24 scenarios. The following factors were changed in order to study the driver's behavior: signage and their location, pavement markings, distances between the toll plaza and ramps, and traffic conditions. All of these factors were altered and observed on five of the eight possible routes than can be taken through the toll plaza. The subjects were asked to complete questionnaires before and after all of the scenarios, as well as in between each driving scenario. These questionnaires included demographic characteristics, such as age, education, income, E-PASS ownership, etc. The data that were collected by the driving simulator and questionnaires were analyzed by ANOVA and multinomial logistic regression models. A positive relationship was found between non-urgent lane changing and the current real-world sign conditions prior to the toll plaza. Relationships were also found between the subjects' speed in various locations and signage before the toll plaza and segment length after the toll plaza. Along with specified recommendations for future research in toll plaza safety, recommendations for the Dean Mainline Toll Plaza include maintaining the current signs and pavement markings, as they were found to be beneficial in drivers performing safe lane changing maneuvers.
Show less - Date Issued
- 2016
- Identifier
- CFE0006085, ucf:50960
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006085
- Title
- Analysis of pedestrian safety using micro-simulation and driving simulator.
- Creator
-
Wu, Jiawei, Radwan, Essam, Abdel-Aty, Mohamed, Abou-Senna, Hatem, University of Central Florida
- Abstract / Description
-
In recent years, traffic agencies have begun to place emphasis on the importance of pedestrian safety. In the United States, nearly 70,000 pedestrians were reported injured in 2015. Although the number only account for 3% of all the people injured in traffic crashes, the number of pedestrian fatalities is still around 15% of total traffic fatalities. Furthermore, the state of Florida has consistently ranked as one of the worst states in terms of pedestrian crashes, injuries and fatalities....
Show moreIn recent years, traffic agencies have begun to place emphasis on the importance of pedestrian safety. In the United States, nearly 70,000 pedestrians were reported injured in 2015. Although the number only account for 3% of all the people injured in traffic crashes, the number of pedestrian fatalities is still around 15% of total traffic fatalities. Furthermore, the state of Florida has consistently ranked as one of the worst states in terms of pedestrian crashes, injuries and fatalities. Therefore, it is befitting to focus on the pedestrian safety. This dissertation mainly focused on pedestrian safety at both midblock crossings and intersections by using micro-simulation and driving simulator. First, this study examined if the micro-simulation models (VISSIM and SSAM) could estimate pedestrian-vehicle conflicts at signalized intersections. A total of 42 video-hours were recorded at seven signalized intersections for field data collection. The observed conflicts from the field were used to calibrate VISSIM and replicate the conflicts. The calibrated and validated VISSIM model generated the pedestrian-vehicle conflicts from SSAM software using the vehicle trajectory data in VISSIM. The mean absolute percent error (MAPE) was used to determine the optimum TTC and PET thresholds for pedestrian-vehicle conflicts and linear regression analysis was used to study the correlation between the observed and simulated conflicts at the established thresholds. The results indicated the highest correlation between the simulated and observed conflicts when the TTC parameter was set at 2.7 and the PET was set at 8. Second, the driving simulator experiment was designed to assess pedestrian safety under different potential risk factors at both midblock crossings and intersections. Four potential risk factors were selected and 67 subjects participated in this experiment. In order to analyze pedestrian safety, the surrogate safety measures were examined to evaluate these pedestrian-vehicle conflicts. Third, by using the driving simulator data from the midblock crossing scenario, typical examples of drivers' deceleration rate and the distance to crosswalk were summarized, which exhibited a clear drivers' avoidance pattern during the vehicle pedestrian conflicts. This pattern was summarized into four stages, including the brake response stage, the deceleration adjustment stage, the maximum deceleration stage, and the brake release stage. In addition, the pedestrian-vehicle conflict prediction model was built to predict the minimum distance between vehicle and pedestrian.Finally, this study summarized the three different kinds of data that were to evaluate the pedestrian safety, including field data, simulation data, and driving simulator data. The process of combining of field data, simulation data, and simulator data was proposed. The process would show how the researches could evaluate the pedestrian safety by using the field observations, micro-simulation, and driving simulator.
Show less - Date Issued
- 2017
- Identifier
- CFE0006822, ucf:51770
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006822
- Title
- Estimating a Freight Mode Choice Model: A Case Study of Commodity Flow Survey 2012.
- Creator
-
Keya, Nowreen, Eluru, Naveen, Abdel-Aty, Mohamed, Radwan, Essam, University of Central Florida
- Abstract / Description
-
This research effort develops a national freight mode choice model employing data from the 2012 Commodity Flow Survey (CFS). While several research efforts have developed mode choice model with multiple modes in the passenger travel context, the literature is sparse in the freight context. The primary reasons being unavailability and/or the high cost associated with the acquisition of mode choice and level of service (LOS) measures (-) such as travel time and travel cost. The first...
Show moreThis research effort develops a national freight mode choice model employing data from the 2012 Commodity Flow Survey (CFS). While several research efforts have developed mode choice model with multiple modes in the passenger travel context, the literature is sparse in the freight context. The primary reasons being unavailability and/or the high cost associated with the acquisition of mode choice and level of service (LOS) measures (-) such as travel time and travel cost. The first contribution of the research effort is to develop travel time and cost measures for various modes reported in the CFS. The study considers five modes: hire truck, private truck, air, parcel service and other modes (rail, ship, pipeline, and other miscellaneous single and multiple modes). The LOS estimation is undertaken for a sample of CFS 2012 data that is partitioned into estimation sample and holdout sample. Subsequently, a mixed multinomial logit model is developed using the estimation sample. The exogenous variables considered in the model include LOS measures, freight characteristics, and transportation network and Origin-Destination variables. The model also accounts for unobserved factors that influence the mode choice process. The estimated mode choice model is validated using the holdout sample. Finally, a policy sensitivity analysis is conducted to illustrate the applicability of the proposed model.
Show less - Date Issued
- 2016
- Identifier
- CFE0006835, ucf:51766
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006835
- Title
- Improving Safety under Reduced Visibility Based on Multiple Countermeasures and Approaches including Connected Vehicles.
- Creator
-
Wu, Yina, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
The effect of low visibility on both crash occurrence and severity is a major concern in the traffic safety field. Different approaches were utilized in this research to analyze the effects of fog on traffic safety and evaluate the effectiveness of different fog countermeasures. First, a (")Crash Risk Increase Indicator (CRII)(") was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash...
Show moreThe effect of low visibility on both crash occurrence and severity is a major concern in the traffic safety field. Different approaches were utilized in this research to analyze the effects of fog on traffic safety and evaluate the effectiveness of different fog countermeasures. First, a (")Crash Risk Increase Indicator (CRII)(") was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash risk with traffic flow characteristics. Second, a new algorithm was proposed to evaluate the rear-end crash risk under fog conditions. Logistic and negative binomial models were estimated in order to explore the relationship between the potential of rear-end crashes and the reduced visibility together with other traffic parameters. Moreover, the effectiveness of real-time fog warning systems was assessed by quantifying and characterizing drivers' speed adjustments through driving simulator experiments. A hierarchical assessment concept was suggested to explore the drivers' speed adjustment maneuvers. Two linear regression models and one hurdle beta regression model were estimated for the indexes. Also, another driving simulator experiment was conducted to explore the effectiveness of Connected-Vehicles (CV) crash warning systems on the drivers' awareness of the imminent situation ahead to take timely crash avoidance action(s). Finally, a micro-simulation experiment was also conducted to evaluate the safety benefits of a proposed Variable Speed limit (VSL) strategy and CV technologies. The proposed VSL strategy and CV technologies were implemented and tested for a freeway section through the micro-simulation software VISSIM. The results of the above mentioned studies showed the impact of reduced visibility on traffic safety, and the effectiveness of different fog countermeasures.
Show less - Date Issued
- 2017
- Identifier
- CFE0006928, ucf:51704
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006928
- Title
- Determining the Feasibility of using Micro Simulation to asses safety of Pedestrian Crossings.
- Creator
-
Darius, Jenner, Radwan, Essam, Abou-Senna, Hatem, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
For the past several decades, pedestrian safety has been an oncoming issue that has thrown the area of transportation engineering into a frenzy. Pedestrian safety has become predominantly one of the leading causes of fatalities in traffic accidents. Florida has been reported as one of the leading states in pedestrian fatalities with 2.56 fatality rate per 100,000 population and about 20 percent of all traffic fatalities in the state of Florida. Nonetheless, as research is being done and...
Show moreFor the past several decades, pedestrian safety has been an oncoming issue that has thrown the area of transportation engineering into a frenzy. Pedestrian safety has become predominantly one of the leading causes of fatalities in traffic accidents. Florida has been reported as one of the leading states in pedestrian fatalities with 2.56 fatality rate per 100,000 population and about 20 percent of all traffic fatalities in the state of Florida. Nonetheless, as research is being done and hypotheses are being calibrated and produced, there has to be a way of measuring and determining the number of pedestrian-to-vehicle conflicts without having to yet apply the system on the field without further validation. Moreover, pedestrian-to-vehicle conflicts have been a rising issue in correlation to the pedestrian fatalities. The fact that the highway safety manual has limited information about crash modification functions for pedestrian and that pedestrian fatality is a rare event, it is worthwhile identifying and adopting surrogate safety measures for pedestrian. Thus, having the capability to analyze various surrogate safety measures within the confines of micro simulation would be a great contribution to real-world application. As a result, the purpose of this thesis is to determine the feasibility of using micro simulation to assess safety of pedestrian crossings using specifically VISSIM and SSAM. During this study, a great deal of data extraction was taken from videotapes collected at nine various intersections, each with its own environmental and geometrical factors. Various parameters were taken from the different sites in order to calibrate and validate VISSIM and SSAM. The parameters included traffic and pedestrian volumes, walking speeds, crossing times, signal timings, and pedestrian-to-vehicle conflicts. During this study, an extensive amount of analysis testing was done in order to obtain the optimum threshold within various combinations of thresholds that would define the pedestrian-to-vehicle conflicts. The analysis was initiated for the time to collision (TTC) and post encroachment time (P.E.T) thresholds. This is done so that the typical scenario of an intersection can be analyzed and comparisons can be made efficiently between observed and simulated conflicts. There were 55 combinations of TTC and PET thresholds produced that were also statistically calculated using the mean absolute percent error (MAPE) in order to determine the most efficient threshold for all 9 intersections. Calibration also was done for parameters in VISSIM that included the safety distance factor (SDF) and the Add-stop distance to assess the sensitivity of these parameters in computing the number of pedestrian-to-vehicle conflicts. These thresholds and factors were used for further validation and assessment of the feasibility of the SSAM and VISSIM model. Data results displayed that the simulated conflicts and the observed conflicts illustrated reasonable correlation. However, even with the feasibility of VISSIM and SSAM being validated, there still are questions that arise pertaining to whether VISSIM and other micro simulation can assess real-world driver behavior and the unpredictability of driver maneuvering. More research with more intersections are recommended to be done.
Show less - Date Issued
- 2016
- Identifier
- CFE0006526, ucf:51379
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006526
- Title
- Analysis of Driving Behavior at Expressway Toll Plazas using Driving Simulator.
- Creator
-
Saad, Moatz, Abdel-Aty, Mohamed, Eluru, Naveen, Lee, JaeYoung, University of Central Florida
- Abstract / Description
-
The objective of this study is to analyze the driving behavior at toll plazas by examining multiple scenarios using a driving simulator to study the effect of different options including different path decisions, various signs, arrow markings, traffic conditions, and extending auxiliary lanes before and after the toll plaza on the driving behavior. Also, this study focuses on investigating the effect of drivers' characteristics on the dangerous driving behavior (e.g. speed variation, sudden...
Show moreThe objective of this study is to analyze the driving behavior at toll plazas by examining multiple scenarios using a driving simulator to study the effect of different options including different path decisions, various signs, arrow markings, traffic conditions, and extending auxiliary lanes before and after the toll plaza on the driving behavior. Also, this study focuses on investigating the effect of drivers' characteristics on the dangerous driving behavior (e.g. speed variation, sudden lane change, drivers' confusion). Safety and efficiency are the fundamental goals that transportation engineering is always seeking for the design of highways. Transportation agencies have a crucial challenging task to accomplish traffic safety, particularly at the locations that have been identified as crash hotspots. In fact, toll plaza locations are one of the most critical and challenging areas that expressway agencies have to pay attention to because of the increasing traffic crashes over the past years near toll plazas.Drivers are required to make many decisions at expressway toll plazas which result in drivers' confusion, speed variation, and abrupt lane change maneuvers. These crucial decisions are mainly influenced by three reasons. First, the limited distance between toll plazas and the merging areas at the on-ramps before the toll plazas. In additional to the limited distance between toll plazas and the diverging areas after the toll plazas at the off-ramps. Second, it is also affected by the location and the configuration of signage and pavement markings. Third, drivers' decisions are affected by the different lane configurations and tolling systems that can cause drivers' confusion and stress. Nevertheless, limited studies have explored the factors that influence driving behavior and safety at toll plazas. There are three main systems of the toll plaza, the traditional mainline toll plaza (TMTP), the hybrid mainline toll plaza (HMTP), and the all-electronic toll collection (AETC). Recently, in order to improve the safety and the efficiency of the toll plazas, most of the traditional mainline toll plazas have been converted to the hybrid toll plazas or the all-electronic toll collection plazas. This study assessed driving behavior at a section, including a toll plaza on one of the main expressways in Central Florida. The toll plaza is located between a close on-ramp and a nearby off-ramp. Thus, these close distances have a significant effect on increasing driver's confusion and unexpected lane change before and after the toll plaza. Driving simulator experiments were used to study the driving behavior at, before and after the toll plaza. The details of the section and the plaza were accurately replicated in the simulator. In the driving simulator experiment, Seventy-two drivers with different age groups were participated. Subsequently, each driver performed three separate scenarios out of a total of twenty-four scenarios. Seven risk indicators were extracted from the driving simulator experiment data by using MATLAB software. These variables are average speed, standard deviation of speed, standard deviation of lane deviation, acceleration rate, standard deviation of acceleration (acceleration noise), deceleration rate, and standard deviation of deceleration (braking action variation). Moreover, various scenario variables were tested in the driving simulator including different paths, signage, pavement markings, traffic condition, and extending auxiliary lanes before and after the toll plaza. Divers' individual characteristics were collected from a questionnaire before the experiment. Also, drivers were filling a questionnaire after each scenario to check for simulator sickness or discomfort. Nine variables were extracted from the simulation questionnaire for representing individual characteristics including, age, gender, education level, annual income, crash experience, professional drivers, ETC-tag use, driving frequency, and novice international drivers. A series of mixed linear models with random effects to account for multiple observations from the same participant were developed to reveal the contributing factors that affect driving behavior at toll plazas. The results uncovered that all drivers who drove through the open road tolling (ORT) showed higher speed and lower speed variation, lane deviation, and acceleration noise than other drivers who navigate through the tollbooth. Also, the results revealed that providing adequate signage, and pavement markings are effective in reducing risky driving behavior at toll plazas. Drivers tend to drive with less lane deviation and acceleration noise before the toll plaza when installing arrow pavement markings. Adding dynamic message sign (DMS) at the on-ramp has a significant effect on reducing speed variation before the toll plaza. Likewise, removing the third overhead sign before the toll plaza has a considerable influence on reducing aggressive driving behavior before and after the toll plaza. This result may reflect drivers' desire to feel less confusion by excessive signs and markings. Third, extending auxiliary lanes with 660 feet (0.125 miles) before or after the toll plaza have an effect on increasing the average speed and reducing the lane deviation and the speed variation at and before the toll plaza. It also has an impact on increasing the acceleration noise and the braking action variation after the toll plaza. Finally, it was found that in congested conditions, participants drive with a lower speed variation and lane deviation before the toll plaza but with a higher acceleration noise after the toll plaza. On the other hand, understanding drivers' characteristics is particularly important for exploring their effect on risky driving behavior. Young drivers (18-25) and old drivers (older than 50 years) consistently showed a higher risk behavior than middle age drivers (35 to 50). Also, it was found that male drivers are riskier than female drivers at toll plazas. Drivers with high education level, drivers with high income, ETC-tag users, and drivers whose driving frequency is less than three trips per day are more cautious and tend to drive at a lower speed.
Show less - Date Issued
- 2016
- Identifier
- CFE0006492, ucf:51391
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006492
- Title
- The effectiveness of Child Restraint and Bicycle Helmet Policies to Improve Road Safety.
- Creator
-
Bustamante, Claudia, Abdel-Aty, Mohamed, Eluru, Naveen, Lee, JaeYoung, University of Central Florida
- Abstract / Description
-
Analyzing the effect of legislation in children's safety when they travel as motor-vehicle passengers and bicycle riders can allow us to evaluate the effectiveness in transportation policies. The Child Restraint Laws (CRL) and Bicycle Helmet Laws (BHL) were studied by analyzing the nationwide Fatality Analysis Reporting System (FARS) to estimate the fatality reduction as well as drivers' decisions to use Child Restraint Systems (CRS) and bicycle helmets respectively. Differences in...
Show moreAnalyzing the effect of legislation in children's safety when they travel as motor-vehicle passengers and bicycle riders can allow us to evaluate the effectiveness in transportation policies. The Child Restraint Laws (CRL) and Bicycle Helmet Laws (BHL) were studied by analyzing the nationwide Fatality Analysis Reporting System (FARS) to estimate the fatality reduction as well as drivers' decisions to use Child Restraint Systems (CRS) and bicycle helmets respectively. Differences in legislation could have different effects on traffic fatalities. Therefore, this study presents multiple methodologies to study these effects. In the evaluation of traffic safety issues, several proven statistical models have shown to be effective at estimating risky factors that might influence crash prevention. These proven models and predictive data analysis guided the process to attempt different models, leading to the development of three specific models used in this study to best estimate the effectiveness of these laws. Then, it was found that legislation in Child Safety Policy has consequences in traffic fatalities. A negative binomial model was created to analyze the CRL influence at the state-level in fatal crashes involving children, and showed that legislating on CRS can reduce the number of fatalities by 29% for children aged 5 to 9. Additionally, at the drivers-level a logistic regression model with random effects was used to determine the significant variables that influence the driver's decision to restrain his/her child. Such variables include: driver's restraint use, road classification, weather condition, number of occupants in the vehicle, traffic violations and driver's and child's age. It was also shown that drivers from communities with deprived socio-economic status are less likely to use CRS. In the same way, a binary logistic regression model was developed to evaluate the effect of BHL in bicycle helmet-use. Findings from this model show that bicyclists from states with the BHL are 236 times more likely to wear a helmet compared to those from states without the BHL. Moreover, the bicyclist's age, gender, education, and income level also influences bicycle helmet use. Both studies suggest that enacting CRL and BHL at the state-level for the studied age groups can be combined with education, safety promotion, enforcement, and program evaluation as proven countermeasures to increase children's traffic safety. This study evidenced that there is a lack of research in this field, especially when policy making requires having enough evidence to support the laws in order to not become an arbitrary legislation procedure affecting child's protection in the transportation system.
Show less - Date Issued
- 2017
- Identifier
- CFE0006571, ucf:51315
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006571
- Title
- Analysis of Pedestrian Crash characteristics and Contributing Causes in Central Florida.
- Creator
-
Bianco, Zainb, Abou-Senna, Hatem, Abdel-Aty, Mohamed, Radwan, Essam, University of Central Florida
- Abstract / Description
-
This research investigates the main reasons leading the State of Florida to be ranked among the worst states in terms of pedestrian safety with four metro areas considered the most dangerous for pedestrians among all the United States as reported in the Dangerous by Design report. The study analyzes the characteristics and contributing causes of pedestrian crashes that occurred in Central Florida over a 5 year-period (2011-2015) at intersections and along roadway segments at mid-block...
Show moreThis research investigates the main reasons leading the State of Florida to be ranked among the worst states in terms of pedestrian safety with four metro areas considered the most dangerous for pedestrians among all the United States as reported in the Dangerous by Design report. The study analyzes the characteristics and contributing causes of pedestrian crashes that occurred in Central Florida over a 5 year-period (2011-2015) at intersections and along roadway segments at mid-block locations using the data obtained from the Signal 4 Analytics database. All pedestrian related crashes were compiled and all the 6,789 crash reports were studied thoroughly. Intersection and roadway pedestrian related crashes were identified along with all the parameters and conditions related to the high crash risk of pedestrians. However, due to inconsistencies in the police report inputs such as miscoding and misinterpretation, a screening criteria was developed to exclude or disqualify crashes that do not meet the research requirements. Preliminary descriptive statistics revealed the most common types of crashes at each location. For intersection-related crashes, it was found that left turn, right turn and through moving vehicles struck crossing pedestrians. At mid-block locations, major crash types were through moving vehicles hitting pedestrians crossing and walking along the roadway. The evaluated factors affecting pedestrian crashes were classified into four main categories; location characteristics (e.g. intersection, midblock, type of control, presence of crosswalk, presence of sidewalk), pedestrian factors (e.g. pedestrian under influence, failure to yield to the right of way), driver/vehicle characteristics (e.g. driving under influence, failed to yield to traffic control device, aggressive driving), and environmental-related factors (e.g. weather conditions, road surface conditions and time of day) were among the factors studied.Three different models were utilized in the analysis using the SPSS statistical software package. A multinomial logit model was developed to predict the likelihood that a pedestrian will be involved into one of the common crash types. A binary regression model was developed to understand the significant factors contributing to the main causes at each intersection type whether at signalized or un-signalized intersections. Lastly, an ordinal regression model was developed to identify the significant factors affecting the level of injury severity sustained by pedestrians. The results of the multinomial logit model for intersection crashes revealed a high probability of right turn crashes associated with drivers at fault with no aggressive driving related crashes compared to left turn crashes. The results also showed that the probability of through moving vehicle crashes with no traffic control device was 2.437 times higher than left turn crashes. These results confirmed the results of the binary model that a lower likelihood of left or right turn crashes was associated with un-signalized intersections when compared to through crashes. Lastly, a greater probability of through crashes was associated with running the red light when compared to left turn crashes.The results of the binary model revealed that the majority of the un-signalized intersection crashes were attributed to drivers at fault. Among other contributing factors was crossing at un-signalized intersections not equipped with the crosswalks. The chance of crashes at un-signalized intersections is 15.657 times higher in the absence of crosswalks compared to un-signalized intersections in which crosswalks are present. Conversely, signalized intersections related crashes were attributed to running the red light and pedestrians failing to obey traffic control devices.For the ordinal models for crashes at either intersections or mid-block locations, the results revealed that a reduction in the likelihood of severe injuries was associated with drivers being at fault, daytime, no aggressive driving related crashes and sober pedestrians. However, red light running related to intersection crashes, as well as pedestrians failing to yield to the right of way, and drivers under influence related to mid-block crashes were associated with high injury severity and an increase in the likelihood of severe injuries. The findings of this research and examination of the factors affecting pedestrians' crash likelihood and injury severity can lead to better crash mitigation strategies, countermeasures and policies that would alleviate this growing problem in Central Florida.
Show less - Date Issued
- 2017
- Identifier
- CFE0006566, ucf:51310
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006566
- Title
- Hierarchical Corridor Safety Analysis Using Multiple Approaches.
- Creator
-
Alarifi, Saif, Abdel-Aty, Mohamed, Tatari, Omer, Kuo, Pei-Fen, University of Central Florida
- Abstract / Description
-
Traffic crashes are a major cause of concern globally. Extensive efforts from transportation professionals have been made to investigate new methods to identify the contributing factors to crashes at various locations on the road network. Corridors, among other road network's components, play a vital role in moving people and goods between primary zones in different areas, and the safety and operational improvements of them have been the focus of many studies since they carry the most traffic...
Show moreTraffic crashes are a major cause of concern globally. Extensive efforts from transportation professionals have been made to investigate new methods to identify the contributing factors to crashes at various locations on the road network. Corridors, among other road network's components, play a vital role in moving people and goods between primary zones in different areas, and the safety and operational improvements of them have been the focus of many studies since they carry the most traffic on the road network. Corridors contain mainly intersections and segments, and previous corridor studies have focused on a sole type of road entity. Having both components while analyzing corridors in addition to corridor-level variables in a hierarchical joint model framework would provide a comprehensive understanding of the existing safety problems along corridors. Therefore, this research aims to provide a complete understanding of the contributing factors to crashes at intersections and segments along corridors. In addition, it explores the associated crash risk factors with crash counts of different types and severity levels. The results reveal that accounting for the variations in traffic volumes and roadway characteristics, by estimating the model with random parameters, across corridors improved the model's performance. Also, the results confirm the importance of accounting for the spatial autocorrelation between road entities along the same corridor, and the adjacency-based first-order neighboring structure provides the best fit for the data among the other neighboring structures. Furthermore, it was found that the significant variables and their magnitudes are different across crash types and severity levels. Also, road designers and engineers should carefully identify the optimal number and location of driveways, median openings, and access points within the influence area of intersections since they significantly affect crashes along corridors. Lastly, this research suggests and justifies considering the proposed hierarchical joint model for future corridor studies
Show less - Date Issued
- 2018
- Identifier
- CFE0006967, ucf:51666
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006967
- Title
- Analysis of taxi drivers' driving behavior based on a driving simulator experiment.
- Creator
-
Wu, Jiawei, Radwan, Essam, Abdel-Aty, Mohamed, Abou-Senna, Hatem, University of Central Florida
- Abstract / Description
-
Due to comfort, convenience, and flexibility, taxis become more and more prevalent in China, especially in large cities. According to a survey reported by Beijing Traffic Development Research Center, there were 696 million taxi person-rides in Beijing in 2011. However, many violations and road crashes that were related to taxi drivers occurred more frequently. The survey showed that there were a total of 17,242 taxi violations happened in Beijing in only one month in 2003, which accounted for...
Show moreDue to comfort, convenience, and flexibility, taxis become more and more prevalent in China, especially in large cities. According to a survey reported by Beijing Traffic Development Research Center, there were 696 million taxi person-rides in Beijing in 2011. However, many violations and road crashes that were related to taxi drivers occurred more frequently. The survey showed that there were a total of 17,242 taxi violations happened in Beijing in only one month in 2003, which accounted for 56% of all drivers' violations. Besides, taxi drivers also had a larger accident rate than other drivers, which showed that nearly 20% of taxi drivers had accidents each year. This study mainly focuses on investigating differences in driving behavior between taxi drivers and non-professional drivers.To examine the overall characteristics of taxi drivers and non-professional drivers, this study applied a hierarchical driving behavior assessment method to evaluate driving behaviors. This method is divided into three levels, including low-risk level, medium-risk level, and high-risk level. Low-risk level means the basic vehicle control. Medium-risk level refers to the vehicle dynamic decision. High-risk level represents the driver avoidance behavior when facing a potential crash.The Beijing Jiatong University (BJTU) driving simulator was applied to test different risk level scenarios which purpose is to find out the differences between taxi drivers and non-professional drivers on driving behaviors. Nearly 60 subjects, which include taxi drivers and non-professional drivers, were recruited in this experiment. Some statistical methods were applied to analyze the data and a logistic regression model was used to perform the high-risk level.The results showed that taxi drivers have more driving experience and their driving style is more conservative in the basic vehicle control level. For the car following behavior, taxi drivers have smaller following speed and larger gap compared to other drivers. For the yellow indication judgment behavior, although taxi drivers are slower than non-professional drivers when getting into the intersection, taxi drivers are more likely to run red light. For the lane changing behavior, taxi drivers' lane changing time is longer than others and lane changing average speed of taxi drivers is lower than other drivers.Another different behavior in high-risk level is that taxi drivers are more inclined to turn the steering wheel when facing a potential crash compared to non-professional drivers. However, non-professional drivers have more abrupt deceleration behaviors if they have the same situation.According to the experiment results, taxi drivers have a smaller crash rate compared to non-professional drivers. Taxi drivers spend a large amount of time on the road so that their driving experience must exceed that of non-professional drivers, which may bring them more skills. It is also speculated that because taxi drivers spend long hours on the job they probably have developed a more relaxed attitude about congestion and they are less likely to be candidates for road rage and over aggressive driving habits.
Show less - Date Issued
- 2014
- Identifier
- CFE0005561, ucf:50277
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005561
- Title
- An Analysis of the Protected-Permitted Left Turn at Intersections with a Varying Number of Opposing Through Lanes.
- Creator
-
Navarro, Alexander, Radwan, Essam, Abou-Senna, Hatem, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
The Flashing Yellow Arrow Left Turn signal is quickly becoming prominent in Central Florida as a new method of handling left turns at traffic signals. While the concept of a protected-permitted left turn is not groundbreaking, the departure from the typical display of a five-section signal head is, for this type of operation. The signal head introduced is a four-section head with a flashing yellow arrow between the yellow and green arrows. With this signal head quickly becoming the standard,...
Show moreThe Flashing Yellow Arrow Left Turn signal is quickly becoming prominent in Central Florida as a new method of handling left turns at traffic signals. While the concept of a protected-permitted left turn is not groundbreaking, the departure from the typical display of a five-section signal head is, for this type of operation. The signal head introduced is a four-section head with a flashing yellow arrow between the yellow and green arrows. With this signal head quickly becoming the standard, there is a need to re-evaluate the operational characteristics of the left turning vehicle and advance the knowledge of the significant parameters that may affect the ability for a driver to make a left turn at a signalized intersection. With previous research into the behavioral and operational characteristics of the flashing yellow arrow conducted, there is more information becoming available about the differences between this signal and the previously accepted method of allowing left turns at an intersection. The protected-permitted signal is typically displayed at an intersection with up to two through lanes and generally a protected signal is installed when the number of through lanes increases above two unless specific criteria is met. With the advent of larger arterials and more traffic on the highway networks, the push to operate these intersections at their maximum efficiency has resulted in more of these protected-permitted signals being present at these larger intersections, including the flashing yellow arrow.The core of the research that follows is a comparative analysis of the operation and parameters that affect the left turn movement of the intersection with larger geometry to that of the smaller geometry. The significant parameters of the left turn movement were examined through means of collecting, organizing and analyzing just over 68 hours of field data. This research details the determining of the significant parameters based on the generation of a simulation model of the protected left turn using Synchro, a traffic simulation package, and regression models using field driven data to determine the significant parameters for predicting the number of left turns that can be made in the permitted phase under specific operating conditions. Intuitively, there is an expectation that a larger intersection will not allow for as many permitted lefts as a smaller intersection with all conditions remaining the same. The conclusions drawn from this analysis provide the framework to understanding the similarities and the differences that are encountered when the intersection geometry differs and help to more efficiently manage traffic at signalized intersections.The work of this field promises to enhance the operations of the left turning movement for traffic control devices. With an understanding of the statistical models generated, a broader base of knowledge is gained as to the significant parameters that affect a driver's ability to make the left turn. A discussion of the statistical differences and between the models generated from the small and large geometry intersections is critical to drive further research into standards being developed for the highway transportation network and the treatment of these large signalized intersections. The exploration of specific parameters to predict the number of permitted left turns will yield results as to if there is more to be considered with larger intersections moving forward as they become a standard sight on the roadway network.
Show less - Date Issued
- 2014
- Identifier
- CFE0005387, ucf:50440
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005387
- Title
- A comparative analysis of different Dilemma Zone countermeasures at signalized intersections based on Cellular Automaton Model.
- Creator
-
Wu, Yina, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
In the United States, intersections are among the most frequent locations for crashes. One of the major problems at signalized intersection is the dilemma zone, which is caused by false driver behavior during the yellow interval. This research evaluated driver behavior during the yellow interval at signalized intersections and compared different dilemma zone countermeasures. The study was conducted through four stages.First, the driver behavior during the yellow interval were collected and...
Show moreIn the United States, intersections are among the most frequent locations for crashes. One of the major problems at signalized intersection is the dilemma zone, which is caused by false driver behavior during the yellow interval. This research evaluated driver behavior during the yellow interval at signalized intersections and compared different dilemma zone countermeasures. The study was conducted through four stages.First, the driver behavior during the yellow interval were collected and analyzed. Eight variables, which are related to risky situations, are considered. The impact factors of drivers' stop/go decisions and the presence of the red-light running (RLR) violations were also analyzed. Second, based on the field data, a logistic model, which is a function of speed, distance to the stop line and the lead/follow position of the vehicle, was developed to predict drivers' stop/go decisions. Meanwhile, Cellular Automata (CA) models for the movement at the signalized intersection were developed. In this study, four different simulation scenarios were established, including the typical intersection signal, signal with flashing green phases, the intersection with pavement marking upstream of the approach, and the intersection with a new countermeasure: adding an auxiliary flashing indication next to the pavement marking. When vehicles are approaching the intersection with a speed lower than the speed limit of the intersection approach, the auxiliary flashing yellow indication will begin flashing before the yellow phase. If the vehicle that has not passed the pavement marking before the onset of the auxiliary flashing yellow indication and can see the flashing indication, the driver should choose to stop during the yellow interval. Otherwise, the driver should choose to go at the yellow duration. The CA model was employed to simulate the traffic flow, and the logistic model was applied as the stop/go decision rule. Dilemma situations that lead to rear-end crash risks and potential RLR risks were used to evaluate the different scenarios. According to the simulation results, the mean and standard deviation of the speed of the traffic flow play a significant role in rear-end crash risk situations, where a lower speed and standard deviation could lead to less rear-end risk situations at the same intersection. High difference in speed are more prone to cause rear-end crashes. With Respect to the RLR violations, the RLR risk analysis showed that the mean speed of the leading vehicle has important influence on the RLR risk in the typical intersection simulation scenarios as well as intersections with the flashing green phases' simulation scenario.Moreover, the findings indicated that the flashing green could not effectively reduce the risk probabilities. The pavement marking countermeasure had positive effects on reducing the risk probabilities if a platoon's mean speed was not under the speed used for designing the pavement marking. Otherwise, the risk probabilities for the intersection would not be reduced because of the increase in the RLR rate. The simulation results showed that the scenario with the pavement marking and an auxiliary indication countermeasure, which adds a flashing indication next to the pavement marking, had less risky situations than the other scenarios with the same speed distribution. These findings suggested the effectiveness of the pavement marking and an auxiliary indication countermeasure to reduce both rear-end collisions and RLR violations than other countermeasures.
Show less - Date Issued
- 2014
- Identifier
- CFE0005562, ucf:50291
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005562
- Title
- TRAFFIC CONFLICT ANALYSIS UNDER FOG CONDITIONS USING COMPUTER SIMULATION.
- Creator
-
Zhang, Binya, Radwan, Essam, Abdel-Aty, Mohamed, Abou-Senna, Hatem, University of Central Florida
- Abstract / Description
-
The weather condition is a crucial influence factor on road safety issues. Fog is one of the most noticeable weather conditions, which has a significant impact on traffic safety. Such condition reduces the road's visibility and consequently can affect drivers' vision, perception, and judgments. The statistical data shows that many crashes are directly or indirectly caused by the low-visibility weather condition. Hence, it is necessary for road traffic engineers to study the relationship of...
Show moreThe weather condition is a crucial influence factor on road safety issues. Fog is one of the most noticeable weather conditions, which has a significant impact on traffic safety. Such condition reduces the road's visibility and consequently can affect drivers' vision, perception, and judgments. The statistical data shows that many crashes are directly or indirectly caused by the low-visibility weather condition. Hence, it is necessary for road traffic engineers to study the relationship of road traffic accidents and their influence factors. Among these factors, the traffic volume and the speed limits in poor visibility areas are the primary reasons that can affect the types and occurring locations of road accidents.In this thesis, microscopic traffic simulation, through the use of VISSIM software, was used to study the road safety issue and its influencing factors due to limited visibility. A basic simulation model was built based on previously collected field data to simulate Interstate 4 (I-4)'s environment, geometry characteristics, and the basic traffic volume composition conditions. On the foundation of the basic simulation model, an experimental model was built to study the conflicts' types and distribution places under several different scenarios. Taking into consideration the entire 4-mile study area on I-4, this area was divided into 3 segments: section 1 with clear visibility, fog area of low visibility, and section 2 with clear visibility. Lower speed limits in the fog area, which were less than the limits in no-fog areas, were set to investigate the different speed limits' influence on the two main types of traffic conflicts: lane-change conflicts and rear-end conflicts. The experimental model generated several groups of traffic trajectory data files. The vehicle conflicts data were stored in these trajectory data files which, contains the conflict locations' coordinates, conflict time, time-to-conflict, and post-encroachment-time among other measures. The Surrogate Safety Assessment Model (SSAM), developed by the Federal Highway Administration, was applied to analyze these conflict data.From the analysis results, it is found that the traffic volume is an important factor, which has a large effect on the number of conflicts. The number of lane-change and rear-end conflicts increases along with the traffic volume growth. Another finding is that the difference between the speed limits in the fog area and in the no-fog areas is another significant factor that impacts the conflicts' frequency. Larger difference between the speed limits in two nearing road sections always leads to more accidents due to the inadequate reaction time for vehicle drivers to brake in time. And comparing to the scenarios that with the reduced speed limits in the low visibility zone, the condition that without the reduced speed limit has higher conflict number, which indicates that the it is necessary to put a lower speed limit in the fog zone which has a lower visibility. The results of this research have a certain reference value for studying the relationship between the road traffic conflicts and the impacts of different speed limits under fog condition. Overall, the findings of this research suggest follow up studies to further investigate possible relationships between conflicts as observed by simulation models and reported crashes in fog areas.
Show less - Date Issued
- 2015
- Identifier
- CFE0005747, ucf:50104
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005747
- Title
- TRAFFIC SAFETY ASSESSMENT OF DIFFERENT TOLL COLLECTION SYSTEMS ON EXPRESSWAYS USING MULTIPLE ANALYTICAL TECHNIQUES.
- Creator
-
Abuzwidah, Muamer, Abdel-Aty, Mohamed, Radwan, Essam, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
Traffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten...
Show moreTraffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten years. Nevertheless, according to the World Health Organization, the world still lost 1.24 million lives from road traffic crashes in the year of 2013. And without action, traffic crashes on the roads network are predicted to result in deaths of around 1.9 million people, and up to 50 million more people suffer non-fatal injuries annually, with many incurring a disability as a result of their injury by the year 2020. To meet the transportation needs, the use of expressways (toll roads) has risen dramatically in many countries in the past decade. In fact, freeways and expressways are considered an important part of any successful transportation system. These facilities carry the majority of daily trips on the transportation network. Although expressways offer high level of service, and are considered the safest among other types of roads, traditional toll collection systems may have both safety and operational challenges. The traditional toll plazas still experience many crashes, many of which are severe. Therefore, it becomes more important to evaluate the traffic safety impacts of using different tolling systems. The main focus of the research in this dissertation is to provide an up-to-date safety impact of using different toll collection systems, as well as providing safety guidelines for these facilities to promote safety and enhance mobility on expressways. In this study, an extensive data collection was conducted that included one hundred mainline toll plazas located on approximately 750 miles of expressways in Florida. Multiple sources of data available online maintained by Florida Department of Transportation were utilized to identify traffic, geometric and geographic characteristics of the locations as well as investigating and determination of the most complete and accurate data. Different methods of observational before-after and Cross-Sectional techniques were used to evaluate the safety effectiveness of applying different treatments on expressways. The Before-After method includes Na(&)#239;ve Before-After, Before-After with Comparison Group, and Before-After with Empirical Bayesian. A set of Safety Performance Functions (SPFs) which predict crash frequency as a function of explanatory variables were developed at the aggregate level using crash data and the corresponding exposure and risk factors. Results of the aggregate traffic safety analysis can be used to identify the hazardous locations (hot spots) such as traditional toll plazas, and also to predict crash frequency for untreated sites in the after period in the Before-After with EB method or derive Crash Modification Factors (CMF) for the treatment using the Cross-Sectional method. This type of analysis is usually used to improve geometric characteristics and mainly focus on discovering the risk factors that are related to the total crash frequency, specific crash type, and/or different crash severity levels. Both simple SPFs (with traffic volume only as an explanatory variable) and full SPFs (with traffic volume and additional explanatory variable(s)) were used to estimate the CMFs and only CMFs with lower standard error were recommended.The results of this study proved that safety effectiveness was significantly improved across all locations that were upgraded from Traditional Mainline Toll Plazas (TMTP) to the Hybrid Mainline Toll Plazas (HMTP) system. This treatment significantly reduced total, Fatal-and-Injury (F+I), and Rear-End crashes by 47, 46 and 65 percent, respectively. Moreover, this study examined the traffic safety impact of using different designs, and diverge-and-merge areas of the HMTP. This design combines either express Open Road Tolling (ORT) lanes on the mainline and separate traditional toll collection to the side (design-1), or traditional toll collection on the mainline and separate ORT lanes to the side (design-2). It was also proven that there is a significant difference between these designs, and there is an indication that design-1 is safer and the majority of crashes occurred at diverge-and-merge areas before and after these facilities. However, design-2 could be a good temporary design at locations that have low prepaid transponder (Electronic Toll Collection (ETC)) users. In other words, it is dependent upon the percentage of the ETC users. As this percentage increases, more traffic will need to diverge and merge; thus, this design becomes riskier. In addition, the results indicated significant relationships between the crash frequency and toll plaza types, annual average daily traffic, and drivers' age. The analysis showed that the conversion from TMTP to the All-Electronic Toll Collection (AETC) system resulted in an average reduction of 77, 76, and 67 percent for total, F+I, and Property Damage Only (PDO) crashes, respectively; for rear end and Lane Change Related (LCR) crashes the average reductions were 81 and 75 percent, respectively. The conversion from HMTP to AETC system enhanced traffic safety by reducing crashes by an average of 23, 29 and 19 percent for total, F+I, and PDO crashes; also, for rear end and LCR crashes, the average reductions were 15 and 21 percent, respectively. Based on these results, the use of AETC system changed toll plazas from the highest risk sections on Expressways to be similar to regular segments. Therefore, it can be concluded that the use of AETC system was proven to be an excellent solution to several traffic operations as well as environmental and economic problems. For those agencies that cannot adopt the HMTP and the AETC systems, improving traffic safety at traditional toll plazas should take a priority.This study also evaluates the safety effectiveness of the implementation of High-Occupancy Toll lanes (HOT Lanes) as well as adding roadway lighting to expressways. The results showed that there were no significant impact of the implementation of HOT lanes on the roadway segment as a whole (HOT and Regular Lanes combined). But there was a significant difference between the regular lanes and the HOT lanes at the same roadway segment; the crash count increased at the regular lanes and decreased at the HOT lanes. It was found that the total and F+I crashes were reduced at the HOT lanes by an average of 25 and 45 percent, respectively. This may be attributable to the fact that the HOT lanes became a highway within a highway. Moreover adding roadway lighting has significantly improved traffic safety on the expressways by reducing the night crashes by approximately 35 percent.Overall, the proposed analyses of the safety effectiveness of using different toll collection systems are useful in providing expressway authorities with detailed information on where countermeasures must be implemented. This study provided for the first time an up-to-date safety impact of using different toll collection systems, also developed safety guidelines for these systems which would be useful for practitioners and roadway users.
Show less - Date Issued
- 2014
- Identifier
- CFE0005751, ucf:50100
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005751
- Title
- Evaluating the Effectiveness of Conversion of Traditional Five Section Head Signal to Flashing Yellow Arrow (FYA) Signal.
- Creator
-
Almoshaogeh, Meshal, Radwan, Essam, Abdel-Aty, Mohamed, Abou-Senna, Hatem, University of Central Florida
- Abstract / Description
-
In the United States, there are two schemes of operating traffic signal controls for permitted protected left turns (PPLT) namely the traditional five-section head system (known as Dog-House) and the flashing yellow arrow system (FYA). Past studies have agreed that these controls lead to decrease the average delay per left turn vehicle, decrease the protected green time, increase the left turn capacity, and enhance the intersection overall operation.The flashing yellow arrow (FYA) has been...
Show moreIn the United States, there are two schemes of operating traffic signal controls for permitted protected left turns (PPLT) namely the traditional five-section head system (known as Dog-House) and the flashing yellow arrow system (FYA). Past studies have agreed that these controls lead to decrease the average delay per left turn vehicle, decrease the protected green time, increase the left turn capacity, and enhance the intersection overall operation.The flashing yellow arrow (FYA) has been approved by the Federal Highway Administration as the national standard for the PPLT operations at signalized intersections. So, the Florida Department of Transportation also approved this new system and they are extensively replacing the traditional system with the new system on the area of Central Florida (Lin, et al, 2010). Both these systems have been used for a long time and there are some studies that evaluated these systems but there are limited number of projects that evaluated and/or compared between the two PPLT systems from the operational perspective.The main goal of this research is to study the characteristics of traffic operations and evaluate the effectiveness of the conversion from five-section head signal to the FYA treatments at 13 intersections located in Orlando, Florida. To reach this goal, detailed data collection efforts were conducted at 13 selected intersections in the central Florida area and appropriate statistical tests were conducted using the Minitab 17 Software. Statistical tests were attempted to fit different new regression models that correlate delay and left turn volumes as response variables against a set of independent variables that included permitted green time, opposing volume, percent of trucks, time gaps, speed, and land use type. In addition to fitting the data to regression models, these models were also analyzed for the purpose of detecting any significant differences between the five-section head treatment and FYA treatment.The statistical differences of converting the five-section head system to FYA system were discussed. The results in this thesis agreed with some of the previous studies and did not agree with others. In general, the flashing yellow arrow system was found to enhance the intersection operation, increase the number of left turn vehicles, and reduce the delay. Also, some suggestions and recommendations were made based on this study results.
Show less - Date Issued
- 2014
- Identifier
- CFE0005296, ucf:50570
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005296
- Title
- Improving Traffic Safety at School Zones by Engineering and Operational Countermeasures.
- Creator
-
Rahman, Md Hasibur, Abdel-Aty, Mohamed, Lee, JaeYoung, Zaki Hussein, Mohamed, University of Central Florida
- Abstract / Description
-
Safety issues at school zone areas have been one of the most important topics in the traffic safety field. Although many studies have evaluated the effectiveness of various traffic control devices (e.g., sign, flashing beacon, speed monitoring display), there is a lack of studies exploring different roadway countermeasures and the relationship between school-related factors and crashes. In this study, the most crash-prone school zone was identified in Orange and Seminole Counties, Florida,...
Show moreSafety issues at school zone areas have been one of the most important topics in the traffic safety field. Although many studies have evaluated the effectiveness of various traffic control devices (e.g., sign, flashing beacon, speed monitoring display), there is a lack of studies exploring different roadway countermeasures and the relationship between school-related factors and crashes. In this study, the most crash-prone school zone was identified in Orange and Seminole Counties, Florida, based on crash rate. Afterward, a microsimulation network was built in VISSIM environment to test different roadway countermeasures in the school zones. Three different countermeasures: two-step speed reduction (TSR), decreasing the number of driveways (DD), and replacing the two-way left-turn lane (TWLTL) to the raised median (RM) were implemented in the microsimulation. Three surrogate safety measures-: (1) time exposed time to collision (TET), (2) time integrated time to collision (TIT) and (3) time exposed rear-end crash risk index (TERCRI) were utilized in this study as indicators for safety evaluation. The higher value of surrogate safety measures indicates higher crash risk. The results showed that both TSR and DD reduced TET, TIT and TERCRI values significantly compare to the base condition. Moreover, the combination of TSR and DD countermeasures outperformed their individual effectiveness. The One-way ANOVA analysis showed that all the sub-scenarios were significantly different from each other. Sensitivity analysis result has proved that all the sub-scenarios in TSR and DD reduced TET, TIT and TERCRI values significantly for different value of TTC threshold. On the other hand, for converting the TWLTL to RM, the crash risk was higher than the base condition because of the turning movements of vehicle. The results of this study could help transportation planners and decision makers to understand the effect of these countermeasures to improve safety at school zones.
Show less - Date Issued
- 2019
- Identifier
- CFE0007708, ucf:52409
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007708
- Title
- Real-time traffic safety evaluation models and their application for variable speed limits.
- Creator
-
Yu, Rongjie, Abdel-Aty, Mohamed, Radwan, Ahmed, Madani Larijani, Kaveh, Ahmed, Mohamed, Wang, Xuesong, University of Central Florida
- Abstract / Description
-
Traffic safety has become the first concern in the transportation area. Crashes have cause extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence at both the aggregate (targeting crash frequency per segment, intersection, etc.,) and disaggregate levels (analyzing each crash event). The aggregate traffic safety studies, mainly...
Show moreTraffic safety has become the first concern in the transportation area. Crashes have cause extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence at both the aggregate (targeting crash frequency per segment, intersection, etc.,) and disaggregate levels (analyzing each crash event). The aggregate traffic safety studies, mainly developing safety performance functions (SPFs), are being conducted for the purpose of unveiling crash contributing factors for the interest locations. Results of the aggregate traffic safety studies can be used to identify crash hot spots, calculate crash modification factors (CMF), and improve geometric characteristics. Aggregate analyses mainly focus on discovering the hazardous factors that are related to the frequency of total crashes, of specific crash type, or of each crash severity level. While disaggregate studies benefit from the reliable surveillance systems which provide detailed real-time traffic and weather data. This information could help in capturing microlevel influences of the hazardous factors which might lead to a crash. The disaggregate traffic safety models, also called real-time crash risk evaluation models, can be used in monitoring crash hazardousness with the real-time field data fed in. One potential use of real-time crash risk evaluation models is to develop Variable Speed Limits (VSL) as a part of a freeway management system. Models have been developed to predict crash occurrence to proactively improve traffic safety and prevent crash occurrence.In this study, first, aggregate safety performance functions were estimated to unveil the different risk factors affecting crash occurrence for a mountainous freeway section. Then disaggregate real-time crash risk evaluation models have been developed for the total crashes with both the machine learning and hierarchical Bayesian models. Considering the need for analyzing both aggregate and disaggregate aspects of traffic safety, systematic multi-level traffic safety studies have been conducted for single- and multi-vehicle crashes, and weekday and weekend crashes. Finally, the feasibility of utilizing a VSL system to improve traffic safety on freeways has been investigated. This research was conducted based on data obtained from a 15-mile mountainous freeway section on I-70 in Colorado. The data contain historical crash data, roadway geometric characteristics, real-time weather data, and real-time traffic data. Real-time weather data were recorded by 6 weather stations installed along the freeway section, while the real-time traffic data were obtained from the Remote Traffic Microwave Sensor (RTMS) radars and Automatic Vechicle Identification (AVI) systems. Different datasets have been formulated from various data sources, and prepared for the multi-level traffic safety studies. In the aggregate traffic safety investigation, safety performance functions were developed to identify crash occurrence hazardous factors. For the first time real-time weather and traffic data were used in SPFs. Ordinary Poisson model and random effects Poisson models with Bayesian inference approach were employed to reveal the effects of weather and traffic related variables on crash occurrence. Two scenarios were considered: one seasonal based case and one crash type based case. Deviance Information Criterion (DIC) was utilized as the comparison criterion; and the correlated random effects Poisson models outperform the others. Results indicate that weather condition variables, especially precipitation, play a key role in the safety performance functions. Moreover, in order to compare with the correlated random effects Poisson model, Multivariate Poisson model and Multivariate Poisson-lognormal model have been estimated. Conclusions indicate that, instead of assuming identical random effects for the homogenous segments, considering the correlation effects between two count variables would result in better model fit. Results from the aggregate analyses shed light on the policy implication to reduce crash frequencies. For the studied roadway segment, crash occurrence in the snow season have clear trends associated with adverse weather situations (bad visibility and large amount of precipitation); weather warning systems can be employed to improve road safety during the snow season. Furthermore, different traffic management strategies should be developed according to the distinct seasonal influence factors. In particular, sites with steep slopes need more attention from the traffic management center and operators especially during snow seasons to control the excess crash occurrence. Moreover, distinct strategy of freeway management should be designed to address the differences between single- and multi-vehicle crash characteristics.In addition to developing safety performance functions with various modeling techniques, this study also investigates four different approaches of developing informative priors for the independent variables. Bayesian inference framework provides a complete and coherent way to balance the empirical data and prior expectations; merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance Information Criterion, R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparisons across the models indicate that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies.In addition to the aggregate analyses, real-time crash risk evaluation models have been developed to identify crash contributing factors at the disaggregate level. Support Vector Machine (SVM), a recently proposed statistical learning model and Hierarchical Bayesian logistic regression models were introduced to evaluate real-time crash risk. Classification and regression tree (CART) model has been developed to select the most important explanatory variables. Based on the variable selection results, Bayesian logistic regression models and SVM models with different kernel functions have been developed. Model comparisons based on receiver operating curves (ROC) demonstrate that the SVM model with Radial basis kernel function outperforms the others. Results from the models demonstrated that crashes are likely to happen during congestion periods (especially when the queuing area has propagated from the downstream segment); high variation of occupancy and/or volume would increase the probability of crash occurrence.Moreover, effects of microscopic traffic, weather, and roadway geometric factors on the occurrence of specific crash types have been investigated. Crashes have been categorized as rear-end, sideswipe, and single-vehicle crashes. AVI segment average speed, real-time weather data, and roadway geometric characteristics data were utilized as explanatory variables. Conclusions from this study imply that different active traffic management (ATM) strategies should be designed for three- and two-lane roadway sections and also considering the seasonal effects. Based on the abovementioned results, real-time crash risk evaluation models have been developed separately for multi-vehicle and single-vehicle crashes, and weekday and weekend crashes. Hierarchical Bayesian logistic regression models (random effects and random parameter logistic regression models) have been introduced to address the seasonal variations, crash unit level's diversities, and unobserved heterogeneity caused by geometric characteristics. For the multi-vehicle crashes: congested conditions at downstream would contribute to an increase in the likelihood of multi-vehicle crashes; multi-vehicle crashes are more likely to occur during poor visibility conditions and if there is a turbulent area that exists downstream. Drivers who are unable to reduce their speeds timely are prone to causing rear-end crashes. While for the single-vehicle crashes: slow moving traffic platoons at the downstream detector of the crash occurrence locations would increase the probability of single-vehicle crashes; large variations of occupancy downstream would also increase the likelihood of single-vehicle crash occurrence.Substantial efforts have been dedicated to revealing the hazardous factors that affect crash occurrence from both the aggregate and disaggregate level in this study, however, findings and conclusions from these research work need to be transferred into applications for roadway design and freeway management. This study further investigates the feasibility of utilizing Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm has been proposed. First, an extension of the traffic flow model METANET was employed to predict traffic flow while considering VSL's impacts on the flow-density diagram; a real-time crash risk evaluation model was then estimated for the purpose of quantifying crash risk; finally, the optimal VSL control strategies were achieved by employing an optimization technique of minimizing the total predicted crash risks along the VSL implementation area. Constraints were set up to limit the increase of the average travel time and differences between posted speed limits temporarily and spatially. The proposed VSL control strategy was tested for a mountainous freeway bottleneck area in the microscopic simulation software VISSIM. Safety impacts of the VSL system were quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels were modeled in VISSIM to monitor the sensitivity of VSL's safety impacts on driver compliance levels. Conclusions demonstrate that the proposed VSL system could effectively improve traffic safety by decreasing crash risk, enhancing speed homogeneity, and reducing travel time under both high and moderate driver compliance levels; while the VSL system does not have significant effects on traffic safety enhancement under the low compliance scenario. Future implementations of VSL control strategies and related research topics were also discussed.
Show less - Date Issued
- 2013
- Identifier
- CFE0005283, ucf:50556
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005283
- Title
- Investigating and Facilitating the Transferability of Safety Performance Functions.
- Creator
-
Farid, Ahmed Tarek Ahmed, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
Safety performance functions (SPFs) are essential analytical tools in the road safety field. The SPFs are statistical regression models used to predict crash counts by roadway facility type, crash type and severity. The national Highway Safety Manual (HSM) is a generic guidebook used for road safety evaluation and enhancement. In it, default SPFs, developed using negative binomial (NB) regression, are provided for multiple facility types and crash categories. Roadway agencies, whether public...
Show moreSafety performance functions (SPFs) are essential analytical tools in the road safety field. The SPFs are statistical regression models used to predict crash counts by roadway facility type, crash type and severity. The national Highway Safety Manual (HSM) is a generic guidebook used for road safety evaluation and enhancement. In it, default SPFs, developed using negative binomial (NB) regression, are provided for multiple facility types and crash categories. Roadway agencies, whether public or private, may opt to not invest their resources in data collection and processing to develop own localized SPFs. Instead, the agencies may adopt the HSM's. However, the HSM's SPFs may not necessarily be applicable to any conditions. Hence, this research is focused on SPF transferability, specifically for rural divided multilane highway segments. Use of Bayesian informative priors to aid in the transferability of NB SPFs, developed for Florida, to California's conditions and vice versa is investigated. It is demonstrated that informative priors facilitate SPF transferability. Furthermore, NB SPFs are developed for Florida, Ohio, Illinois, Minnesota, California, Washington and North Carolina. That is to evaluate the transferability of each state's SPFs to the other states' conditions. The results indicate that Ohio, Illinois, Minnesota and California have SPFs that are transferable to conditions of each of the four states. Also, two methods are proposed for calibrating transferred SPFs to the destinations' conditions and are shown to outperform the SPF calibration methods in the road safety literature. Finally, a variety of modeling frameworks are proposed for developing and transferring SPFs of the seven aforementioned states to each state's data. Not a single model exhibits the best fit when transferred in all cases. However, the Tobit model, NB model and a hybrid model that coalesces the results of both perform the best in a substantial number of the transferred SPFs.
Show less - Date Issued
- 2018
- Identifier
- CFE0007000, ucf:52054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007000