Current Search: Mohamed, Abdel-Aty (x)
View All Items
Pages
- Title
- Development of Traffic Safety Zones and Integrating Macroscopic and Microscopic Safety Data Analytics for Novel Hot Zone Identification.
- Creator
-
Lee, JaeYoung, Abdel-Aty, Mohamed, Radwan, Ahmed, Nam, Boo Hyun, Kuo, Pei-Fen, Choi, Keechoo, University of Central Florida
- Abstract / Description
-
Traffic safety has been considered one of the most important issues in the transportation field. With consistent efforts of transportation engineers, Federal, State and local government officials, both fatalities and fatality rates from road traffic crashes in the United States have steadily declined from 2006 to 2011.Nevertheless, fatalities from traffic crashes slightly increased in 2012 (NHTSA, 2013). We lost 33,561 lives from road traffic crashes in the year 2012, and the road traffic...
Show moreTraffic safety has been considered one of the most important issues in the transportation field. With consistent efforts of transportation engineers, Federal, State and local government officials, both fatalities and fatality rates from road traffic crashes in the United States have steadily declined from 2006 to 2011.Nevertheless, fatalities from traffic crashes slightly increased in 2012 (NHTSA, 2013). We lost 33,561 lives from road traffic crashes in the year 2012, and the road traffic crashes are still one of the leading causes of deaths, according to the Centers for Disease Control and Prevention (CDC). In recent years, efforts to incorporate traffic safety into transportation planning has been made, which is termed as transportation safety planning (TSP). The Safe, Affordable, Flexible Efficient, Transportation Equity Act (-) A Legacy for Users (SAFETEA-LU), which is compliant with the United States Code, compels the United States Department of Transportation to consider traffic safety in the long-term transportation planning process. Although considerable macro-level studies have been conducted to facilitate the implementation of TSP, still there are critical limitations in macroscopic safety studies are required to be investigated and remedied. First, TAZ (Traffic Analysis Zone), which is most widely used in travel demand forecasting, has crucial shortcomings for macro-level safety modeling. Moreover, macro-level safety models have accuracy problem. The low prediction power of the model may be caused by crashes that occur near the boundaries of zones, high-level aggregation, and neglecting spatial autocorrelation.In this dissertation, several methodologies are proposed to alleviate these limitations in the macro-level safety research. TSAZ (Traffic Safety Analysis Zone) is developed as a new zonal system for the macroscopic safety analysis and nested structured modeling method is suggested to improve the model performance. Also, a multivariate statistical modeling method for multiple crash types is proposed in this dissertation. Besides, a novel screening methodology for integrating two levels is suggested. The integrated screening method is suggested to overcome shortcomings of zonal-level screening, since the zonal-level screening cannot take specific sites with high risks into consideration. It is expected that the integrated screening approach can provide a comprehensive perspective by balancing two aspects: macroscopic and microscopic approaches.
Show less - Date Issued
- 2014
- Identifier
- CFE0005195, ucf:50653
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005195
- Title
- Evaluation of crash modification factors and functions including time trends at intersections.
- Creator
-
Wang, Jung-Han, Abdel-Aty, Mohamed, Radwan, Essam, Eluru, Naveen, Lee, JaeYoung, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
Traffic demand has increased as population increased. The US population reached 313,914,040 in 2012 (US Census Bureau, 2015). Increased travel demand may have potential impact on roadway safety and the operational characteristics of roadways. Total crashes and injury crashes at intersections accounted for 40% and 44% of traffic crashes, respectively, on US roadways in 2007 according to the Intersection Safety Issue Brief (FHWA, 2009). Traffic researchers and engineers have developed a...
Show moreTraffic demand has increased as population increased. The US population reached 313,914,040 in 2012 (US Census Bureau, 2015). Increased travel demand may have potential impact on roadway safety and the operational characteristics of roadways. Total crashes and injury crashes at intersections accounted for 40% and 44% of traffic crashes, respectively, on US roadways in 2007 according to the Intersection Safety Issue Brief (FHWA, 2009). Traffic researchers and engineers have developed a quantitative measure of the safety effectiveness of treatments in the form of crash modification factors (CMF). Based on CMFs from multiple studies, the Highway Safety Manual (HSM) Part D (AASHTO, 2010) provides CMFs which can be used to determine the expected number of crash reduction or increase after treatments were installed. Even though CMFs have been introduced in the HSM, there are still limitations that require to be investigated. One important potential limitation is that the HSM provides various CMFs as fixed values, rather than CMFs under different configurations. In this dissertation, the CMFs were estimated using the observational before-after study to show that the CMFs vary across different traffic volume levels when signalizing intersections. Besides screening the effect of traffic volume, previous studies showed that CMFs could vary over time after the treatment was implemented. Thus, in this dissertation, the trends of CMFs for the signalization and adding red light running cameras (RLCs) were evaluated. CMFs for these treatments were measured in each month and 90- day moving windows using the time series ARMA model. The results of the signalization show that the CMFs for rear-end crashes were lower at the early phase after the signalization but gradually increased from the 9th month. Besides, it was also found that the safety effectiveness is significantly worse 18 months after installing RLCs.Although efforts have been made to seek reliable CMFs, the best estimate of CMFs is still widely debated. Since CMFs are non-zero estimates, the population of all CMFs does not follow normal distributions and even if it did, the true mean of CMFs at some intersections may be different than that at others. Therefore, a bootstrap method was proposed to estimate CMFs that makes no distributional assumptions. Through examining the distribution of CMFs estimated by bootstrapped resamples, a CMF precision rating method is suggested to evaluate the reliability of the estimated CMFs. The result shows that the estimated CMF for angle+left-turn crashes after signalization has the highest precision, while estimates of the CMF for rear-end crashes are extremely unreliable. The CMFs for KABCO, KABC, and KAB crashes proved to be reliable for the majority of intersections, but the estimated effect of signalization may not be accurate at some sites.In addition, the bootstrap method provides a quantitative measure to identify the reliability of CMFs, however, the CMF transferability is questionable. Since the development of CMFs requires safety performance functions (SPFs), could CMFs be developed using the SPFs from other states in the United States? This research applies the empirical Bayes method to develop CMFs using several SPFs from different jurisdictions and adjusted by calibration factors. After examination, it is found that applying SPFs from other jurisdictions is not desired when developing CMFs.The process of estimating CMFs using before-after studies requires the understanding of multiple statistical principles. In order to simplify the process of CMF estimation and make the CMFs research reproducible. This dissertation includes an open source statistics package built in R (R, 2013) to make the estimation accessible and reproducible. With this package, authorities are able to estimate reliable CMFs following the procedure suggested by FHWA. In addition, this software package equips a graphical interface which integrates the algorithm of calculating CMFs so that users can perform CMF calculation with minimum programming prerequisite. Expected contributions of this study are to 1) propose methodologies for CMFs to assess the variation of CMFs with different characteristics among treated sites, 2) suggest new objective criteria to judge the reliability of safety estimation, 3) examine the transferability of SPFs when developing CMF using before-after studies, and 4) develop a statistics software to calculate CMFs. Finally, potential relevant applications beyond the scope of this research, but worth investigation in the future are discussed in this dissertation.
Show less - Date Issued
- 2016
- Identifier
- CFE0006413, ucf:51454
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006413
- Title
- Microscopic Safety Evaluation and Prediction for Special Expressway Facilities.
- Creator
-
Wang, Ling, Abdel-Aty, Mohamed, Radwan, Essam, Eluru, Naveen, Lee, JaeYoung, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
Expressways are of great importance and serve as the backbone of a roadway system. One of the reasons why expressways increase travel speeds and provide high level of services is that limited access is provided to permit vehicles to enter or exit expressways. Entering and exiting of vehicles are accomplished through interchanges, which consist of several ramps, thus the spacing between ramps is important. A weaving segment might form when an on-ramp is closely followed by an off-ramp. The...
Show moreExpressways are of great importance and serve as the backbone of a roadway system. One of the reasons why expressways increase travel speeds and provide high level of services is that limited access is provided to permit vehicles to enter or exit expressways. Entering and exiting of vehicles are accomplished through interchanges, which consist of several ramps, thus the spacing between ramps is important. A weaving segment might form when an on-ramp is closely followed by an off-ramp. The geometric design of ramps and the traffic behavior of weaving segments are different from other expressway segments. These differences result in distinct safety mechanisms of these two expressway special facilities. Hence, the safety of these two facilities needs to be addressed.The majority of previous traffic safety studies on expressway special facilities are based on highly aggregated traffic data, e.g., Annual Average Daily Traffic (AADT). This highly aggregated traffic data cannot represent traffic conditions at the time of crashes and also cannot be used in the study of weather and temporal impact on crash occurrence. One way to solve this problem is microscopic safety evaluation and prediction through hourly crash prediction and real-time safety analysis. An hourly crash study averages one or several hours' traffic data in a year and also aggregates crash frequencies in the corresponding hour(s). Then it applies predictive models to determine the statistical relationship between crashes and hourly traffic flow characteristics, such as traffic volume. Real-time safety analysis enables us to predict crash risk and distinguish crashes from non-crashes in the next few minutes using the current traffic, weather, and other conditions.There are four types of crash contributing factors: traffic, geometry, weather, and driver. Among these, traffic parameters have been utilized in all previous microscopic safety studies. On the other hand, the other three factors' impact on microscopic safety has not been widely analyzed. The geometric factors' influence on safety are generally excluded by previous researchers using the matched-case-control method, because the majority of previous microscopic safety studies are on mainlines, where the geometric design of a segment does not change much and geometry does not have a significant effect on safety. Not enough studies have adopted weather factors in microscopic safety analysis because of the limited availability of weather data. The impact of drivers on safety has also not been widely considered since driver information is hard to be obtained. This study explores the relationship between crashes and the four contributing factors. Weather data are obtained from airport weather stations and crash reports which record weather and roadway surface conditions for crashes. Meanwhile, land-use and trip generation parameters serve as surrogates for drivers' behavior.Several methods are used to explore and quantify the impact of these factors. Random forests are used in discovering important and significant explanatory variables, which play significant roles in determining traffic safety, by ranking their importance. Meanwhile, in order to prevent high correlation between independent variables, Pearson correlation tests are carried out before model estimations. Only the variables which are not highly correlated are selected. Then, the selected variables are put in logistic regression models and Poisson-lognormal models to respectively estimate crash risk and crash frequency for special expressway facilities. Meanwhile, in case of correlation among observations in the same segment, a multilevel modeling structure has been implemented. Furthermore, a data mining technique(-)Support Vector Machine (SVM)(-)is used to distinguish crash from non-crash observations. Once the crash mechanisms for special expressway facilities are found, we are able to provide valuable information on how to manage roadway facilities to improve the traffic safety of special facilities. This study adopts Active Traffic Management (ATM) strategies, including Ramp Metering (RM) and Variable Speed Limit (VSL), in order to enhance the safety of a congested weaving segment. RM regulates the entering vehicle volume by adjusts metering rate, and VSL is able to provide smoother mainline traffic by changing the mainline speed limits. The ATM strategies are carried out in microscopic simulation VISSIM through the Component Object Model (COM) interface. The results shows that the crash risk and conflict count of the studies weaving segment have been significantly reduced because of ATM.Furthermore, the mechanisms of traffic conflicts, a surrogate safety measurement, are explored for weaving segments using microscopic simulation. The weaving segment conflict prediction model is compared with its crash prediction model. The results show that there are similarity and differences between conflict and crash mechanisms. Finally, potential relevant applications beyond the scope of this research but worth investigation in the future are also discussed in this dissertation.
Show less - Date Issued
- 2016
- Identifier
- CFE0006414, ucf:51480
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006414
- Title
- Dynamic Hotspot Identification for Limited Access Facilities using Temporal Traffic Data.
- Creator
-
Al Amili, Samer, Abdel-Aty, Mohamed, Radwan, Essam, Eluru, Naveen, Lee, JaeYoung, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
Crash frequency analysis is the most critical tool to investigate traffic safety problems. Therefore, an accurate crash analysis must be conducted. Since traffic continually fluctuates over time and this effects potential of crash occurrence, shorter time periods and less aggregated traffic factors (shorter intervals than AADT) need to be used. In this dissertation, several methodologies have been conducted to elevate the accuracy of crash prediction. The performance of using less aggregated...
Show moreCrash frequency analysis is the most critical tool to investigate traffic safety problems. Therefore, an accurate crash analysis must be conducted. Since traffic continually fluctuates over time and this effects potential of crash occurrence, shorter time periods and less aggregated traffic factors (shorter intervals than AADT) need to be used. In this dissertation, several methodologies have been conducted to elevate the accuracy of crash prediction. The performance of using less aggregated traffic data in modeling crash frequency was explored for weekdays and weekends. Four-time periods for weekdays and two time periods for weekends, with four intervals (5, 15, 30, and 60 minutes). The comparison between AADT based models and short-term period models showed that short-term period models perform better. As a shorter traffic interval than AADT considered, two difficulties began. Firstly, the number of zero observations increased. Secondly, the repetition of the same roadway characteristics arose. To reduce the number of zero observations, only segments with one or more crashes were used in the modeling process. To eliminate the effect of the repetition in the data, random effect was applied. The results recommend adopting segments with only one or more crashes, as they give a more valid prediction and less error.Zero-inflated negative binomial (ZINB) and hurdle negative binomial (HNB) models were examined in addition to the negative binomial for both weekdays and weekends. Different implementations of random effects were applied. Using the random effect either on the count part, on the zero part, or a pair of uncorrelated (or correlated) random effects for both parts of the model. Additionally, the adaptive Gaussian Quadrature, with five quadrature points, was used to increase accuracy. The results reveal that the model which considered the random effect in both parts performed better than other models, and ZINB performed better than HNB.
Show less - Date Issued
- 2018
- Identifier
- CFE0006966, ucf:51682
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006966
- Title
- Integrating the macroscopic and microscopic traffic safety analysis using hierarchical models.
- Creator
-
Cai, Qing, Abdel-Aty, Mohamed, Eluru, Naveen, Hasan, Samiul, Lee, JaeYoung, Yan, Xin, University of Central Florida
- Abstract / Description
-
Crash frequency analysis is a crucial tool to investigate traffic safety problems. With the objective of revealing hazardous factors which would affect crash occurrence, crash frequency analysis has been undertaken at the macroscopic and microscopic levels. At the macroscopic level, crashes from a spatial aggregation (such as traffic analysis zone or county) are considered to quantify the impacts of socioeconomic and demographic characteristics, transportation demand and network attributes so...
Show moreCrash frequency analysis is a crucial tool to investigate traffic safety problems. With the objective of revealing hazardous factors which would affect crash occurrence, crash frequency analysis has been undertaken at the macroscopic and microscopic levels. At the macroscopic level, crashes from a spatial aggregation (such as traffic analysis zone or county) are considered to quantify the impacts of socioeconomic and demographic characteristics, transportation demand and network attributes so as to provide countermeasures from a planning perspective. On the other hand, the microscopic crashes on a segment or intersection are analyzed to identify the influence of geometric design, lighting and traffic flow characteristics with the objective of offering engineering solutions (such as installing sidewalk and bike lane, adding lighting). Although numerous traffic safety studies have been conducted, still there are critical limitations at both levels. In this dissertation, several methodologies have been proposed to alleviate several limitations in the macro- and micro-level safety research. Then, an innovative method has been suggested to analyze crashes at the two levels, simultaneously. At the macro-level, the viability of dual-state models (i.e., zero-inflated and hurdle models) were explored for traffic analysis zone based pedestrian and bicycle crash analysis. Additionally, spatial spillover effects were explored in the models by employing exogenous variables from neighboring zones. Both conventional single-state model (i.e., negative binomial) and dual-state models such as zero-inflated negative binomial and hurdle negative binomial models with and without spatial effects were developed. The model comparison results for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency. Then, the modifiable areal unit problem for macro-level crash analysis was discussed. Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), traffic analysis zones (TAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) were developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposed a method to compare the modeling performance of the three types of geographic units at different spatial configuration through a grid based framework. Specifically, the study region was partitioned to grids of various sizes and the model prediction accuracy of the various macro models was considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperformed the ones that do not consider it. Finally, based on the modeling results, it is recommended to adopt TADs for transportation safety planning.After determining the optimal traffic safety analysis zonal system, further analysis was conducted for non-motorist crashes (pedestrian and bicycle crashes). This study contributed to the literature on pedestrian and bicyclist safety by building on the conventional count regression models to explore exogenous factors affecting pedestrian and bicyclist crashes at the macroscopic level. In the traditional count models, effects of exogenous factors on non-motorist crashes were investigated directly. However, the vulnerable road users' crashes are collisions between vehicles and non-motorists. Thus, the exogenous factors can affect the non-motorist crashes through the non-motorists and vehicle drivers. To accommodate for the potentially different impact of exogenous factors we converted the non-motorist crash counts as the product of total crash counts and proportion of non-motorist crashes and formulated a joint model of the negative binomial (NB) model and the logit model to deal with the two parts, respectively. The formulated joint model was estimated using non-motorist crash data based on the Traffic Analysis Districts (TADs) in Florida. Meanwhile, the traditional NB model was also estimated and compared with the joint model. The results indicated that the joint model provides better data fit and could identify more significant variables. Subsequently, a novel joint screening method was suggested based on the proposed model to identify hot zones for non-motorist crashes. The hot zones of non-motorist crashes were identified and divided into three types: hot zones with more dangerous driving environment only, hot zones with more hazardous walking and cycling conditions only, and hot zones with both. At the microscopic level, crash modeling analysis was conducted for road facilities. This study, first, explored the potential macro-level effects which are always excluded or omitted in the previous studies. A Bayesian hierarchical model was proposed to analyze crashes on segments and intersection incorporating the macro-level data, which included both explanatory variables and total crashes of all segments and intersections. Besides, a joint modeling structure was adopted to consider the potentially spatial autocorrelation between segments and their connected intersections. The proposed model was compared with three other models: a model considering micro-level factors only, one hierarchical model considering macro-level effects with random terms only, and one hierarchical model considering macro-level effects with explanatory variables. The results indicated that models considering macro-level effects outperformed the model having micro-level factors only, which supports the idea to consider macro-level effects for micro-level crash analysis. Besides, the micro-level models were even further enhanced by the proposed model. Finally, significant spatial correlation could be found between segments and their adjacent intersections, supporting the employment of the joint modeling structure to analyze crashes at various types of road facilities. In addition to the separated analysis at either the macro- or micro-level, an integrated approach has been proposed to examine traffic safety problems at the two levels, simultaneously. If conducted in the same study area, the macro- and micro-level crash analyses should investigate the same crashes but aggregating the crashes at different levels. Hence, the crash counts at the two levels should be correlated and integrating macro- and micro-level crash frequency analyses in one modeling structure might have the ability to better explain crash occurrence by realizing the effects of both macro- and micro-level factors. This study proposed a Bayesian integrated spatial crash frequency model, which linked the crash counts of macro- and micro-levels based on the spatial interaction. In addition, the proposed model considered the spatial autocorrelation of different types of road facilities (i.e., segments and intersections) at the micro-level with a joint modeling structure. Two independent non-integrated models for macro- and micro-levels were also estimated separately and compared with the integrated model. The results indicated that the integrated model can provide better model performance for estimating macro- and micro-level crash counts, which validates the concept of integrating the models for the two levels. Also, the integrated model provides more valuable insights about the crash occurrence at the two levels by revealing both macro- and micro-level factors. Subsequently, a novel hotspot identification method was suggested, which enables us to detect hotspots for both macro- and micro-levels with comprehensive information from the two levels. It is expected that the proposed integrated model and hotspot identification method can help practitioners implement more reasonable transportation safety plans and more effective engineering treatments to proactively enhance safety.
Show less - Date Issued
- 2017
- Identifier
- CFE0006724, ucf:51891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006724
- Title
- Microscopic Assessment of Transportation Emissions on Limited Access Highways.
- Creator
-
Abou-Senna, Hatem, Radwan, Ahmed, Abdel-Aty, Mohamed, Al-Deek, Haitham, Cooper, Charles, Johnson, Mark, University of Central Florida
- Abstract / Description
-
On-road vehicles are a major source of transportation carbon dioxide (CO2) greenhouse gas emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, e.g., carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). The need to accurately quantify transportation-related emissions from vehicles is essential. Transportation agencies and researchers in the past have...
Show moreOn-road vehicles are a major source of transportation carbon dioxide (CO2) greenhouse gas emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, e.g., carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). The need to accurately quantify transportation-related emissions from vehicles is essential. Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The new United States Environmental Protection Agency (USEPA) mobile source emissions model, MOVES2010a (MOVES) can estimate vehicle emissions on a second-by-second basis creating the opportunity to develop new software (")VIMIS 1.0(") (VISSIM/MOVES Integration Software) to facilitate the integration process. This research presents a microscopic examination of five key transportation parameters (traffic volume, speed, truck percentage, road grade and temperature) on a 10-mile stretch of Interstate 4 (I-4) test bed prototype; an urban limited access highway corridor in Orlando, Florida. The analysis was conducted utilizing VIMIS 1.0 and using an advanced custom design technique; D-Optimality and I-Optimality criteria, to identify active factors and to ensure precision in estimating the regression coefficients as well as the response variable.The analysis of the experiment identified the optimal settings of the key factors and resulted in the development of Micro-TEM (Microscopic Transportation Emissions Meta-Model). The main purpose of Micro-TEM is to serve as a substitute model for predicting transportation emissions on limited access highways to an acceptable degree of accuracy in lieu of running simulations using a traffic model and integrating the results in an emissions model. Furthermore, significant emission rate reductions were observed from the experiment on the modeled corridor especially for speeds between 55 and 60 mph while maintaining up to 80% and 90% of the freeway's capacity. However, vehicle activity characterization in terms of speed was shown to have a significant impact on the emission estimation approach.Four different approaches were further examined to capture the environmental impacts of vehicular operations on the modeled test bed prototype. First, (at the most basic level), emissions were estimated for the entire 10-mile section (")by hand(") using one average traffic volume and average speed. Then, three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link driving schedules (LDS), and second-by-second operating mode distributions (OPMODE). This research analyzed how the various approaches affect predicted emissions of CO, NOx, PM and CO2. The results demonstrated that obtaining accurate and comprehensive operating mode distributions on a second-by-second basis improves emission estimates. Specifically, emission rates were found to be highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, frequent braking/coasting and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.Additionally, model applications and mitigation scenarios were examined on the modeled corridor to evaluate the environmental impacts in terms of vehicular emissions and at the same time validate the developed model (")Micro-TEM("). Mitigation scenarios included the future implementation of managed lanes (ML) along with the general use lanes (GUL) on the I-4 corridor, the currently implemented variable speed limits (VSL) scenario as well as a hypothetical restricted truck lane (RTL) scenario. Results of the mitigation scenarios showed an overall speed improvement on the corridor which resulted in overall reduction in emissions and emission rates when compared to the existing condition (EX) scenario and specifically on link by link basis for the RTL scenario.The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.
Show less - Date Issued
- 2012
- Identifier
- CFE0004777, ucf:49788
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004777