Current Search: Quintana-Ascencio, Pedro (x)
View All Items
Pages
- Title
- Annual water balance model based on generalized proportionality relationship and its applications.
- Creator
-
Tang, Yin, Wang, Dingbao, Kibler, Kelly, Singh, Arvind, Sumner, David, Quintana-Ascencio, Pedro, University of Central Florida
- Abstract / Description
-
The main goal of this dissertation research is to derive a type of conceptual models for annual water balance at the watershed scale. The proportionality relationship from the Soil Conservation Service Curve Number method was generalized to annual scale for deriving annual water balance model. As a result, a one-parameter Budyko equation was derived based on one-stage partitioning; and a four-parameter Budyko equation was derived based on two-stage partitioning. The derived equations balance...
Show moreThe main goal of this dissertation research is to derive a type of conceptual models for annual water balance at the watershed scale. The proportionality relationship from the Soil Conservation Service Curve Number method was generalized to annual scale for deriving annual water balance model. As a result, a one-parameter Budyko equation was derived based on one-stage partitioning; and a four-parameter Budyko equation was derived based on two-stage partitioning. The derived equations balance model parsimony and representation of dominant hydrologic processes, and provide a new framework to disentangle the roles of climate variability, vegetation, soil and topography on long-term water balance. Three applications of the derived equations were demonstrated. Firstly, the four-parameter Budyko equation was applied to 165 watersheds in the United States to disentangle the roles of climate variability, vegetation, soil and topography on long-term water balance. Secondly, the one-parameter Budyko equation was applied to a large-scale irrigation region. The historical annual total water storage change were reconstructed for assessing groundwater depletion due to irrigation pumping by integrating the derived equation and the satellite-based GRACE (Gravity Recovery and Climate Experiment) data. Thirdly, the one-parameter Budyko equation was used to model the impact of willow treatment on annual evapotranspiration through a two-year field experiment in the Upper St. Johns River marshes. An empirical relationship between the parameter and willow fractional coverage was developed, providing a useful tool for predicting long-term response of evapotranspiration to willow treatment. ?
Show less - Date Issued
- 2017
- Identifier
- CFE0006958, ucf:51638
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006958
- Title
- Reproductive life history and signal evolution in a multi-species assemblage of electric fish.
- Creator
-
Waddell, Joseph, Crampton, William, Fedorka, Kenneth, Quintana-Ascencio, Pedro, Stoddard, Philip, University of Central Florida
- Abstract / Description
-
Animals that co-occur in sympatry with multiple closely-related species use reproductive mate attraction signals not only to assess the quality of a potential conspecific mate (sexual selection), but also to discriminate conspecifics from heterospecifics (species recognition). However, the extent to which sexual selection and species recognition may interact, or even conflict, is poorly known. Neotropical electric fish offer unrivaled opportunities for understanding this problem. They...
Show moreAnimals that co-occur in sympatry with multiple closely-related species use reproductive mate attraction signals not only to assess the quality of a potential conspecific mate (sexual selection), but also to discriminate conspecifics from heterospecifics (species recognition). However, the extent to which sexual selection and species recognition may interact, or even conflict, is poorly known. Neotropical electric fish offer unrivaled opportunities for understanding this problem. They generate simple, stereotyped mate attraction signals that are easy to record and quantify, and that are well-understood from the neurobiological perspective. Additionally, they live in electrically-crowded environments, where multiple congeners live and reproduce in close proximity. This dissertation reports an investigation of electric signal diversity and reproductive life history in a nine-species assemblage of the electric fish genus Brachyhypopomus from the upper Amazon. A year-long quantitative sampling program yielded a library of electric signal recordings from (>)3,000 individuals and an accompanying collection of preserved specimens from which suites of informative life history traits were measured. These data were used to understand basic reproductive biology, and to describe sexually dimorphic and interspecific diversity in electric signals. By integrating approaches from ecology, physiology, and evolutionary biology, novel perspectives are provided on: 1. how sexual selection and species recognition interact to shape signal diversity and the occupation of signal space in multi-species animal communities; 2. how extreme seasonal variation in Amazonian ecosystems influences trade-offs in the allocation of reproductive resources (-) including mate attraction signals, and; 3. how environmental variation shapes general life-history traits in a diverse tropical animal assemblage.
Show less - Date Issued
- 2017
- Identifier
- CFE0006925, ucf:51689
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006925
- Title
- Population dynamics and environmental factors influencing herbs in intact and degraded Florida Rosemary scrub.
- Creator
-
Stephens, Elizabeth, Quintana-Ascencio, Pedro, VonHolle, Mary, Fauth, John, Levey, Douglas, University of Central Florida
- Abstract / Description
-
Species have complex and contextual relationships with their environment; both the relative contributions of life-history stages to population growth and the effect of environmental factors on each stage can be different among co-existing species. Timing and extent of reproduction, survival, and mortality determine population growth, species distributions, and assemblage patterns. I evaluate the role of habitat (intact, degraded) and microsite (shrub, leaf litter, bare sand) on population...
Show moreSpecies have complex and contextual relationships with their environment; both the relative contributions of life-history stages to population growth and the effect of environmental factors on each stage can be different among co-existing species. Timing and extent of reproduction, survival, and mortality determine population growth, species distributions, and assemblage patterns. I evaluate the role of habitat (intact, degraded) and microsite (shrub, leaf litter, bare sand) on population dynamics of Florida scrub herbs. Isolated overgrown shrubs and extensive bare sand areas in degraded scrub were expected to decrease seed predation, reduce competition of herbs with shrubs, and provide larger habitat for recruitment. I provide evidence that habitat and microsite variation influenced demography of five endemic and two common native species through effects on seed removal, emergence, and establishment. Habitat and species affected seed removal: endemic species with large seeds were removed in higher frequency in degraded habitat, likely by vertebrates, while species with small seeds were removed in higher frequency in intact habitat, by invertebrates. There was no evidence of differences in individual seed production between habitats for the two common species, C. fasciculata and B. angustifolia. Invertebrates were primarily responsible for seed removal of both species, although peak season of removal and microsite varied with species. Removal of seeds, emergence, and establishment increased with seed density. Matrix modeling indicated that population growth of C. fasciculata was greater in degraded habitat and greatest in litter microsites, and population growth of B. angustifolia was similar between habitats and greatest in bare sand. Contrasting responses among species to environmental factors in intact and degraded scrub indicated that natural disturbances are not ecologically equivalent to anthropogenic disturbances. Idiosyncratic species dynamics in common environments suggest that understanding relationships between life-history traits and environmental conditions will be required to facilitate restoration.
Show less - Date Issued
- 2013
- Identifier
- CFE0004754, ucf:49791
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004754
- Title
- Estimated diets, diet overlap, and winter habitat associations of four grassland sparrows in Florida dry prairie.
- Creator
-
Korosy, Marianne, Noss, Reed, Quintana-Ascencio, Pedro, Roth, James, Hinkle, Ross, Bowman, Reed, University of Central Florida
- Abstract / Description
-
North American grassland birds show long-term population declines that generally exceed the declines of other bird groups. Efforts to conserve grassland birds require knowledge of diet and habitat requirements during both the breeding and nonbreeding periods of annual life cycles. This dissertation investigated sparrow habitat associations within two defined plant communities of the dry prairie ecosystem, the dry-mesic and wet-mesic prairie, for four prescribed fire treatments over two...
Show moreNorth American grassland birds show long-term population declines that generally exceed the declines of other bird groups. Efforts to conserve grassland birds require knowledge of diet and habitat requirements during both the breeding and nonbreeding periods of annual life cycles. This dissertation investigated sparrow habitat associations within two defined plant communities of the dry prairie ecosystem, the dry-mesic and wet-mesic prairie, for four prescribed fire treatments over two consecutive winters. Grasshopper and Henslow's sparrows showed higher relative abundance in wet-mesic prairie and Bachman's Sparrows were more abundant in dry-mesic prairie across all fire treatments. Abundances of Grasshopper and Bachman's sparrows were best predicted by plant community association and secondly by time since fire; whereas for Henslow's Sparrows, habitat and time since fire were equally important. Fall molt-period diets and diet overlap were modeled for resident Florida Grasshopper and Bachman's sparrows using stable carbon and nitrogen isotope ratios of bird feathers and potential food sources, e.g., arthropods and seeds. Grasshoppers (Orthoptera, including a variety of species foraging on both C3 and C4 herbs), spiders, dragonflies, flies, beetles and weevils comprised the majority of the diets of adult and juvenile Florida Grasshopper Sparrows and Bachman's Sparrows, but in differing proportions. Despite the similarity in reconstructed diets for the two sparrow species, analysis of diet overlap suggested that approximately half of the Florida Grasshopper Sparrows had diets consisting of higher trophic level prey than Bachman's Sparrows. Winter diets and diet overlap among Grasshopper, Henslow's, and Bachman's sparrows were reconstructed using stable carbon and nitrogen isotope ratios of feathers and potential arthropod and seed food sources. Sparrows were captured and recaptured in winter 2007-2008 using systematic flush-netting, removing a tail feather at first capture and then removing the regrown feather when birds were recaptured. Winter diets of all three sparrows included a variety of arthropods, grass seeds, and sedge seeds, but Bachman's Sparrow winter diets spanned greater trophic diversity than either of the migratory sparrows. Estimated diets of Henslow's and Grasshopper sparrows differed from that of Bachman's Sparrow but Henslow's Sparrow diets did not differ from Grasshopper Sparrow diets. This is the first study of fall and winter sparrow diets in Florida based on stable isotopes and the first study in peninsular Florida on habitat associations of ground-dwelling sparrows.
Show less - Date Issued
- 2013
- Identifier
- CFE0005363, ucf:50475
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005363
- Title
- Florida Local Government Conservation Planning: Variability, Drivers, and Policy Implications.
- Creator
-
Pannozzo, Pamela, Noss, Reed, Quintana-Ascencio, Pedro, Hinkle, Charles, Knox, Claire, University of Central Florida
- Abstract / Description
-
This study examined the quality of Florida county government conservation planning. To assess conservation planning quality, a theoretical model of conservation planning as prescribed by the conservation science literature was first developed. A plan evaluation coding protocol was applied to local comprehensive plan Conservation Elements to determine the extent to which county-level conservation planning met the theoretical model. A high degree of variability in conservation planning quality...
Show moreThis study examined the quality of Florida county government conservation planning. To assess conservation planning quality, a theoretical model of conservation planning as prescribed by the conservation science literature was first developed. A plan evaluation coding protocol was applied to local comprehensive plan Conservation Elements to determine the extent to which county-level conservation planning met the theoretical model. A high degree of variability in conservation planning quality was found. Highest quality conservation planning occurred in the Gulf coast counties of southwest Florida. Lowest conservation planning quality occurred in the Florida Panhandle counties. The quality of conservation planning of coastal counties was significantly higher than that of inland counties. Significant regional differences were also found, where conservation planning quality in South Florida counties was significantly higher than conservation planning quality in Panhandle counties. Geographic differences in conservation planning quality were likely attributable to significant differences in socioeconomic variables among counties, including differences in education, wealth, and urbanization. Multiple regression analysis using an information theoretic approach was employed to develop a predictive model of conservation planning quality of Florida local governments. The two most plausible predictors in the model were education level of the public and total resources. Local and global spatial autocorrelation analysis were next applied to county conservation planning scores to investigate spatial patterns of conservation planning quality, which were found to be related to the policy process of diffusion. Lastly, current local government conservation planning policy was analyzed for effectiveness and policy recommendations were made. Improving the effectiveness of local conservation planning will require changes in statutory provisions of the state Florida Forever and Growth Management statutes. It will also require a greater commitment on the part of the state of Florida to protect the state's biological resources over the long term.
Show less - Date Issued
- 2013
- Identifier
- CFE0005041, ucf:49971
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005041
- Title
- Wetland diversity in a disturbance-maintained landscape: Effects of fire and a fire surrogate on aquatic amphibian survival and species depauperateness.
- Creator
-
Klaus, Joyce, Noss, Reed, Quintana-Ascencio, Pedro, Jenkins, David, Dr. L. Katherine Kirkman, University of Central Florida
- Abstract / Description
-
Disturbance is one of the central concepts explaining how diversity arises and is perpetuated in ecological time. A good model system for testing hypotheses related to disturbance is the longleaf pine ecosystem in the southeastern U.S. because in this ecosystem frequent, low-severity fires acts as a disturbance that maintains a unique vegetation structure and high species richness. Vegetation structure influences animal distributions; in fire-dependent ecosystems many animals rely on open...
Show moreDisturbance is one of the central concepts explaining how diversity arises and is perpetuated in ecological time. A good model system for testing hypotheses related to disturbance is the longleaf pine ecosystem in the southeastern U.S. because in this ecosystem frequent, low-severity fires acts as a disturbance that maintains a unique vegetation structure and high species richness. Vegetation structure influences animal distributions; in fire-dependent ecosystems many animals rely on open-structured, fire-maintained vegetation but shrubs and trees encroach into fire-dependent ecosystems where fire has been excluded. Prescribed burning and mechanical removal are commonly used as restoration tools to control encroachment. To better assess and compare the restoration potential of these tools, a more thorough understanding of how they change vegetation structure and habitat suitability for animals is necessary.The southeastern U.S. is a diversity hot-spot for amphibians, many of which require ephemeral wetlands embedded in longleaf pine uplands for the aquatic phase of their life cycle. Amphibian diversity has been declining in recent decades and habitat loss/degradation has been cited as one of the leading causes. Although often overlooked in studies of fire ecology, the ephemeral wetlands required by many amphibians are also fire-dependent habitats that have been negatively impacted by lack of fire. To understand how disturbance interacts with wetland vegetation and aquatic-phase amphibians, three disturbance treatments meant to mimic the effects of natural disturbance on vegetation structure were applied randomly to 28 dry ephemeral wetlands in the Lower Coastal Plain of South Carolina, U.S. The treatments consisted of early growing-season prescribed fire, mechanical vegetation removal (a proposed fire surrogate), and a combination of mechanical removal plus fire; some sites were left untreated for reference. Vegetation structure was quantified and amphibian assemblages were monitored before and after treatments. In addition, one species of amphibian was used in a tadpole survival experiment to examine differences in performance among treatments. Other factors that could be affected by treatments and in turn influence amphibians were measured, including water chemistry, wetland depth, quantity and quality of epilithon, and leaf litter composition.Amphibian survival was lowest, and species depauperateness highest in untreated wetlands. Depauperateness of species whose range was restricted to the range of longleaf pine was lowest in sites that had mechanical treatment plus fire. The mechanical plus fire treatment created the most open vegetation structure with lowest leaf litter accumulation, especially of hardwood litter, conditions correlated with high amphibian survival and diversity. When data from this study was combined with data from a previous study of similar nearby wetlands, a pattern emerged in which one suite of species was absent from recently burned sites, while an entirely different suite of species was absent from long-unburned sites. This evidence suggests that disturbance is related to a shift in amphibian assemblage possibly due to changes in vegetation structure and perhaps wetland ecology in general, from an algal-based system maintained by frequent fire to a detrital-based system that develops in the absence of fire.
Show less - Date Issued
- 2013
- Identifier
- CFE0005015, ucf:49994
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005015
- Title
- Dispersal, Gene Flow, and Adaptive Evolution During Invasion: Testing Range-Limit Theory with the Asian Tiger Mosquito.
- Creator
-
Medley, Kimberly, Jenkins, David, Quintana-Ascencio, Pedro, Hoffman, Eric, Lounibos, Phil, University of Central Florida
- Abstract / Description
-
Understanding the factors that make non-native species successful invaders is an important step towards mitigating spread. At the same time, species invasions can serve as natural experiments to test range-limit theory. Range-limit theory postulates declines in local abundance (abundant center model) and genetic diversity (central-peripheral hypothesis) towards range edges because of underlying environmental gradients. Such declines constrain adaptation to marginal habitats via gene swamping....
Show moreUnderstanding the factors that make non-native species successful invaders is an important step towards mitigating spread. At the same time, species invasions can serve as natural experiments to test range-limit theory. Range-limit theory postulates declines in local abundance (abundant center model) and genetic diversity (central-peripheral hypothesis) towards range edges because of underlying environmental gradients. Such declines constrain adaptation to marginal habitats via gene swamping. However, broader evolutionary theory predicts intermediate rates of immigration into range-edge populations can relieve genetic drift and improve adaptive potential. I tested hypotheses generated from theory while illuminating aspects affecting of the invasion of the Asian tiger mosquito (Aedes albopictus Skuse) into the US. Using reciprocal distribution modeling, I found US populations occupied significantly different climate and habitat than in their native range (SE Asia). Most inconsistencies were found in the northern US range, where Ae. albopictus has recently crept northward, providing an opportunity to test range-limit theory as the range reaches its limit. Because of its limited natural dispersal ability, rapid spread after the 1985 US introduction pointed to human-aided dispersal. I tested the current role of human-aided versus natural dispersal using a landscape genetics framework, and found that natural dispersal dominated current patterns. Some distant localities were highly genetically similar, indicating potential human-aided transport in limited cases. Asymmetric gene flow from core to edge localities supported the abundant center model, but uniformly high genetic diversity contrasted with the central-marginal hypothesis. I detected a significant signature of local adaptation by overwintering diapause-induced eggs in multiple field sites using reciprocal transplants. Surprisingly, most genotypes from throughout the range produced large offspring when overwintered at the range edge. Relative offspring mass between home and away winters peaked at an intermediate immigration rate. These results show that rapid adaptation has occurred in US populations of Ae. albopictus and highlight the potential for further spread. Genetic admixture from multiple introductions may explain high genetic diversity throughout the US range and contribute to high offspring size for all genotypes overwintered at the range edge. Finally, my work highlights the need for a better understanding of contemporary ecological and evolutionary processes leading to range-limits (or expansion) to more accurately reflect processes occurring in a human-dominated world.
Show less - Date Issued
- 2012
- Identifier
- CFE0004635, ucf:49891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004635
- Title
- INTEGRAL PROJECTION MODELS REVEAL INTERACTIVE EFFECTS OF BIOTIC FACTORS AND DISTURBANCE ON PLANT DEMOGRAPHY.
- Creator
-
Tye, Matthew, Quintana-Ascencio, Pedro, Fauth, John, Nevai, Andrew, Menges, Eric, University of Central Florida
- Abstract / Description
-
Understanding factors limiting population growth is crucial to evaluating species persistence in changing environments. I used Integral Projection Models (IPMs) to elucidate the role of biotic interactions and disturbance on population growth rate in two plants: Helianthemum squamatum, a perennial endemic to gypsum habitats in central Spain, and Liatris ohlingerae, a long-lived perennial endemic to the Lake Wales Ridge of central Florida. In H. squamatum, there was a strong positive effect of...
Show moreUnderstanding factors limiting population growth is crucial to evaluating species persistence in changing environments. I used Integral Projection Models (IPMs) to elucidate the role of biotic interactions and disturbance on population growth rate in two plants: Helianthemum squamatum, a perennial endemic to gypsum habitats in central Spain, and Liatris ohlingerae, a long-lived perennial endemic to the Lake Wales Ridge of central Florida. In H. squamatum, there was a strong positive effect of trampling in the site with the highest plant density and moderate positive effects of seed addition in the site with the lowest plant density. Differences in treatment effectiveness between sites may represent a shift from seed to microsite limitation at increasing densities. Additionally, a distinct drop in population growth rate occurred in the hottest and driest year (2009-10). In Liatris ohlingerae, roadside populations had consistently higher population growth rates than scrub populations. A modest negative effect of time-since-fire was observed in plants that did not experience herbivory. Both habitat and time-since-fire showed distinct interactions with vertebrate herbivory, with herbivory increasing the difference in growth rate between habitats and decreasing the difference between time-since-fire classes. The direct effect of herbivory was negative in all environmental combinations except in long unburned populations. These results demonstrate the importance of considering environmental interactions when constructing population models, as well as the validity of using IPMs to assess interactions in species with differing life histories.
Show less - Date Issued
- 2014
- Identifier
- CFE0005271, ucf:50558
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005271
- Title
- Identifying inundation-driven effects among intertidal Crassostrea virginica in a commercially important Gulf of Mexico estuary.
- Creator
-
Solomon, Joshua, Walters, Linda, Weishampel, John, Quintana-Ascencio, Pedro, Hagen, Scott, Wang, Dingbao, University of Central Florida
- Abstract / Description
-
Sea level rise and changing storm frequency and intensity resulting from climate change create tremendous amounts of uncertainty for coastal species. Intertidal species may be especially affected since they are dependent on daily inundation and exposure. The eastern oyster Crassostrea virginica is an economically and biologically important sessile intertidal species ranging from Canada to the Gulf of Mexico. Declines and changes in distribution of oyster populations has forced commercial...
Show moreSea level rise and changing storm frequency and intensity resulting from climate change create tremendous amounts of uncertainty for coastal species. Intertidal species may be especially affected since they are dependent on daily inundation and exposure. The eastern oyster Crassostrea virginica is an economically and biologically important sessile intertidal species ranging from Canada to the Gulf of Mexico. Declines and changes in distribution of oyster populations has forced commercial harvesting to spread from subtidal to intertidal reefs. We investigated the potential responses of intertidal C. virginica to sea level rise, and the response of larval settlement to sedimentation which is likely to increase with higher water levels and storm frequency. Inundation was used as a proxy for sea level rise. We hypothesized four possible outcomes for intertidal oyster reefs as a result of changes in inundation due to sea level rise: (a) intertidal reefs become subtidal and remain in place, (b) intertidal reefs will be lost, (c) intertidal reefs migrate shoreward upslope and remain intertidal, and (d) intertidal reefs will grow in elevation and remain intertidal. To test the plausibility of these four outcomes, oyster ladders were placed at two sites within Apalachicola Bay, Florida, USA. Ladders supported oyster recruitment mats at five heights within the range of intertidal elevations. The bottom-most mat was placed near mean low tide, and the top mat near mean high tide to investigate the effect of tidal inundation time on C. virginica. Sediment traps were attached to ladders with openings at equal elevation to the oyster mats. Ladders were deployed for one year starting in June 2012, and again in June 2013, during peak oyster recruitment season. Monthly for six months during year one, sediment was collected from traps, dried to constant weight and weighed to obtain a monthly average for total sediment at each elevation. At the end of one year, oyster mats were collected from the field and examined for the following responses: live oyster density, mean oyster shell length of live oysters, mean oyster shell angle of growth relative to the benthos, and mean number of sessile competitors. We used AICc to identify the most plausible models using elevation, site, and year as independent variables.Oyster density peaked at intermediate inundation at both sites (maximum 1740 oysters per m2), it decreased slightly at the mean low tide, and sharply at the mean high tide. This response varied between years and sites. Mean oyster shell length peaked near mean low tide (6.7 cm), and decreased with increasing elevation. It varied between years and sites. Oyster shell angle of growth relative to the benthos showed a quadratic response for elevation; site but not year affected this response. Sessile competitor density also showed a quadratic response for elevation and varied between sites and years. Barnacles were the primary spatial competitor reaching densities of up to 28,328 barnacles per m2. Total monthly sedimentation peaked at the lowest elevations, and varied by site, with an order of magnitude difference between sites. Sediment increased with decreasing elevation.Outcomes a, c, and d were found to be viable results of sea level rise, ruling out complete loss of intertidal reefs. Outcome (a) would be associated with decrease in oyster density and increase in oyster length. Outcome (c) would require the laying of oyster cultch upslope and shoreward of current intertidal reefs, as well as the removal of any hard armoring or development. Outcome (d) remained possible, but is the least likely requiring a balance between sedimentation, oyster angle of growth, and recruitment. This should be further investigated. A laboratory experiment was designed to test relative impact of varying sediment grain sizes on settlement of C. virginica larvae. Previous studies showed that suspended solids resulted in decreased larval settlement when using mixed sediment grain sizes. Predicted storm levels and hurricane levels of total suspended solids were used in flow tanks. Sediment from the field experiment was sieved into seven size classes, the most common five of which were used in the experiment since they represented 98.8% of total mass. Flow tanks were designed and built that held 12 aged oyster shells, instant ocean saltwater, and sediment. Oyster larvae were added to the flow tanks and allowed one hour to settle on shells. Each run utilized one of the five size classes of sediment at either a high or low concentration. Following the one-hour settlement period, oyster shells were removed from the flow tank and settled larvae were counted under a dissecting microscope. Settlement was standardized by settlement area using Image J. AICc model selection was performed and the selected model included only grain size, but not concentration. A Tukey's post hoc test differentiated (<)63 ?m from 500 (-) 2000 ?m, with the (<) 63 (&)#181;m grain size having a negative effect on oyster larval settlement. This indicates that the smaller grain sizes of suspended solids are more detrimental to oyster larval settlement than larger grain sizes. The oyster ladder experiment will help resource managers predict and plan for oyster reef migration by cultch laying, and or associated changes in oyster density and shell length if shoreward reef growth is not allowed to occur. The laboratory experiment will help to predict the impacts of future storms on oyster larval recruitment. Together this information can help managers conserve as much remaining oyster habitat as possible by predicting future impacts of climate change on oysters.
Show less - Date Issued
- 2015
- Identifier
- CFE0005717, ucf:50132
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005717
- Title
- Migratory connectivity and carry-over effects in Northwest Atlantic loggerhead turtles (Caretta caretta, L.).
- Creator
-
Ceriani, Simona, Weishampel, John, Ehrhart, Llewellyn, Walters, Linda, Quintana-Ascencio, Pedro, Roth, James, Valdes, Eduardo, University of Central Florida
- Abstract / Description
-
Migration is a widespread and complex phenomenon in nature that has fascinated humans for centuries. Connectivity among populations influences their demographics, genetic structure and response to environmental change. Here, I used the loggerhead turtle (Caretta caretta, L.) as a study organism to address questions related to migratory connectivity and carry-over effects using satellite telemetry, stable isotope analysis and GIS interpolation methods. Telemetry identified foraging areas...
Show moreMigration is a widespread and complex phenomenon in nature that has fascinated humans for centuries. Connectivity among populations influences their demographics, genetic structure and response to environmental change. Here, I used the loggerhead turtle (Caretta caretta, L.) as a study organism to address questions related to migratory connectivity and carry-over effects using satellite telemetry, stable isotope analysis and GIS interpolation methods. Telemetry identified foraging areas previously overlooked for loggerheads nesting in Florida. Next, I validated and evaluated the efficacy of intrinsic markers as a complementary and low cost tool to assign loggerhead foraging regions in the Northwest Atlantic Ocean (NWA), using both a spatially implicit and spatially explicit (isoscapes) approach. I then focused on the nesting beaches and developed a common currency for isotopic studies based on unhatched eggs, which provide a non-invasive and non-destructive method for more extensive sampling to elucidate isotopic patterns across broader spatiotemporal scales. Lastly, I found that intra-population variations in foraging strategies affect annual and long-term reproductive output of loggerheads nesting in Florida. Understanding geospatial linkages is critical to the fostering of appropriate management and conservation strategies for migratory species. My multi-faceted approach contributes to the growing body of literature exploring migratory connectivity and carry-over effects.
Show less - Date Issued
- 2014
- Identifier
- CFE0005470, ucf:50390
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005470