Current Search: Yun, Hae-Bum (x)
View All Items
Pages
- Title
- Structural Health Monitoring using Novel Sensing Technologies and Data Analysis Methods.
- Creator
-
Malekzadeh, Seyedmasoud, Catbas, Fikret, Yun, Hae-Bum, Tatari, Mehmet, Moslehy, Faissal, Gul, Mustafa, University of Central Florida
- Abstract / Description
-
The main objective of this research is to explore, investigate and develop the new data analysis techniques along with novel sensing technologies for structural health monitoring applications. The study has three main parts. First, a systematic comparative evaluation of some of the most common and promising methods is carried out along with a combined method proposed in this study for mitigating drawbacks of some of the techniques. Secondly, non-parametric methods are evaluated on a real life...
Show moreThe main objective of this research is to explore, investigate and develop the new data analysis techniques along with novel sensing technologies for structural health monitoring applications. The study has three main parts. First, a systematic comparative evaluation of some of the most common and promising methods is carried out along with a combined method proposed in this study for mitigating drawbacks of some of the techniques. Secondly, non-parametric methods are evaluated on a real life movable bridge. Finally, a hybrid approach for non-parametric and parametric method is proposed and demonstrated for more in depth understanding of the structural performance. In view of that, it is shown in the literature that four efficient non-parametric algorithms including, Cross Correlation Analysis (CCA), Robust Regression Analysis (RRA), Moving Cross Correlation Analysis (MCCA) and Moving Principal Component Analysis (MPCA) have shown promise with respect to the conducted numerical studies. As a result, these methods are selected for further systematic and comparative evaluation using experimental data. A comprehensive experimental test is designed utilizing Fiber Bragg Grating (FBG) sensors simulating some of the most critical and common damage scenarios on a unique experimental structure in the laboratory. Subsequently the SHM data, that is generated and collected under different damage scenarios, are employed for comparative study of the selected techniques based on critical criteria such as detectability, time to detection, effect of noise, computational time and size of the window. The observations indicate that while MPCA has the best detectability, it does not perform very reliable results in terms of time to detection. As a result, a machine-learning based algorithm is explored that not only reduces the associated delay with MPCA but further improves the detectability performance. Accordingly, the MPCA and MCCA are combined to introduce an improved algorithm named MPCA-CCA. The new algorithm is evaluated through both experimental and real-life studies. It is realized that while the methods identified above have failed to detect the simulated damage on a movable bridge, the MPCA-CCA algorithm successfully identified the induced damage. An investigative study for automated data processing method is developed using non-parametric data analysis methods for real-time condition maintenance monitoring of critical mechanical components of a movable bridge. A maintenance condition index is defined for identifying and tracking the critical maintenance issues. The efficiency of the maintenance condition index is then investigated and demonstrated against some of the corresponding maintenance problems that have been visually and independently identified for the bridge.Finally, a hybrid data interpretation framework is designed taking advantage of the benefits of both parametric and non-parametric approaches and mitigating their shortcomings. The proposed approach can then be employed not only to detect the damage but also to assess the identified abnormal behavior. This approach is also employed for optimized sensor number and locations on the structure.
Show less - Date Issued
- 2014
- Identifier
- CFE0005207, ucf:50648
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005207
- Title
- Structural Identification through Monitoring, Modeling and Predictive Analysis under Uncertainty.
- Creator
-
Gokce, Hasan, Catbas, Fikret, Chopra, Manoj, Mackie, Kevin, Yun, Hae-Bum, DeMara, Ronald, University of Central Florida
- Abstract / Description
-
Bridges are critical components of highway networks, which provide mobility and economical vitality to a nation. Ensuring the safety and regular operation as well as accurate structural assessment of bridges is essential. Structural Identification (St-Id) can be utilized for better assessment of structures by integrating experimental and analytical technologies in support of decision-making. St-Id is defined as creating parametric or nonparametric models to characterize structural behavior...
Show moreBridges are critical components of highway networks, which provide mobility and economical vitality to a nation. Ensuring the safety and regular operation as well as accurate structural assessment of bridges is essential. Structural Identification (St-Id) can be utilized for better assessment of structures by integrating experimental and analytical technologies in support of decision-making. St-Id is defined as creating parametric or nonparametric models to characterize structural behavior based on structural health monitoring (SHM) data. In a recent study by the ASCE St-Id Committee, St-Id framework is given in six steps, including modeling, experimentation and ultimately decision making for estimating the performance and vulnerability of structural systems reliably through the improved simulations using monitoring data. In some St-Id applications, there can be challenges and considerations related to this six-step framework. For instance not all of the steps can be employed; thereby a subset of the six steps can be adapted for some cases based on the various limitations. In addition, each step has its own characteristics, challenges, and uncertainties due to the considerations such as time varying nature of civil structures, modeling and measurements. It is often discussed that even a calibrated model has limitations in fully representing an existing structure; therefore, a family of models may be well suited to represent the structure's response and performance in a probabilistic manner.The principle objective of this dissertation is to investigate nonparametric and parametric St-Id approaches by considering uncertainties coming from different sources to better assess the structural condition for decision making. In the first part of the dissertation, a nonparametric St-Id approach is employed without the use of an analytical model. The new methodology, which is successfully demonstrated on both lab and real-life structures, can identify and locate the damage by tracking correlation coefficients between strain time histories and can locate the damage from the generated correlation matrices of different strain time histories. This methodology is found to be load independent, computationally efficient, easy to use, especially for handling large amounts of monitoring data, and capable of identifying the effectiveness of the maintenance. In the second part, a parametric St-Id approach is introduced by developing a family of models using Monte Carlo simulations and finite element analyses to explore the uncertainty effects on performance predictions in terms of load rating and structural reliability. The family of models is developed from a parent model, which is calibrated using monitoring data. In this dissertation, the calibration is carried out using artificial neural networks (ANNs) and the approach and results are demonstrated on a laboratory structure and a real-life movable bridge, where predictive analyses are carried out for performance decrease due to deterioration, damage, and traffic increase over time. In addition, a long-span bridge is investigated using the same approach when the bridge is retrofitted. The family of models for these structures is employed to determine the component and system reliability, as well as the load rating, with a distribution that incorporates various uncertainties that were defined and characterized. It is observed that the uncertainties play a considerable role even when compared to calibrated model-based predictions for reliability and load rating, especially when the structure is complex, deteriorated and aged, and subjected to variable environmental and operational conditions. It is recommended that a family-of-models approach is suitable for structures that have less redundancy, high operational importance, are deteriorated, and are performing under close capacity and demand levels.
Show less - Date Issued
- 2012
- Identifier
- CFE0004232, ucf:48997
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004232
- Title
- Analytical study of computer vision-based pavement crack quantification using machine learning techniques.
- Creator
-
Mokhtari, Soroush, Yun, Hae-Bum, Nam, Boo Hyun, Catbas, Necati, Shah, Mubarak, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Image-based techniques are a promising non-destructive approach for road pavement condition evaluation. The main objective of this study is to extract, quantify and evaluate important surface defects, such as cracks, using an automated computer vision-based system to provide a better understanding of the pavement deterioration process. To achieve this objective, an automated crack-recognition software was developed, employing a series of image processing algorithms of crack extraction, crack...
Show moreImage-based techniques are a promising non-destructive approach for road pavement condition evaluation. The main objective of this study is to extract, quantify and evaluate important surface defects, such as cracks, using an automated computer vision-based system to provide a better understanding of the pavement deterioration process. To achieve this objective, an automated crack-recognition software was developed, employing a series of image processing algorithms of crack extraction, crack grouping, and crack detection. Bottom-hat morphological technique was used to remove the random background of pavement images and extract cracks, selectively based on their shapes, sizes, and intensities using a relatively small number of user-defined parameters. A technical challenge with crack extraction algorithms, including the Bottom-hat transform, is that extracted crack pixels are usually fragmented along crack paths. For de-fragmenting those crack pixels, a novel crack-grouping algorithm is proposed as an image segmentation method, so called MorphLink-C. Statistical validation of this method using flexible pavement images indicated that MorphLink-C not only improves crack-detection accuracy but also reduces crack detection time.Crack characterization was performed by analysing imagerial features of the extracted crack image components. A comprehensive statistical analysis was conducted using filter feature subset selection (FSS) methods, including Fischer score, Gini index, information gain, ReliefF, mRmR, and FCBF to understand the statistical characteristics of cracks in different deterioration stages. Statistical significance of crack features was ranked based on their relevancy and redundancy. The statistical method used in this study can be employed to avoid subjective crack rating based on human visual inspection. Moreover, the statistical information can be used as fundamental data to justify rehabilitation policies in pavement maintenance.Finally, the application of four classification algorithms, including Artificial Neural Network (ANN), Decision Tree (DT), k-Nearest Neighbours (kNN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) is investigated for the crack detection framework. The classifiers were evaluated in the following five criteria: 1) prediction performance, 2) computation time, 3) stability of results for highly imbalanced datasets in which, the number of crack objects are significantly smaller than the number of non-crack objects, 4) stability of the classifiers performance for pavements in different deterioration stages, and 5) interpretability of results and clarity of the procedure. Comparison results indicate the advantages of white-box classification methods for computer vision based pavement evaluation. Although black-box methods, such as ANN provide superior classification performance, white-box methods, such as ANFIS, provide useful information about the logic of classification and the effect of feature values on detection results. Such information can provide further insight for the image-based pavement crack detection application.
Show less - Date Issued
- 2015
- Identifier
- CFE0005671, ucf:50186
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005671