Current Search: Amarin, Ruba (x)
View All Items
- Title
- HURRICANE WIND SPEED AND RAIN RATE RETRIEVAL ALGORITHM FOR THE STEPPED FREQUENCY MICROWAVE RADIOMETER.
- Creator
-
Amarin, Ruba, Jones, Linwood, University of Central Florida
- Abstract / Description
-
This thesis presents the development and validation of the Hurricane Imaging Retrieval Algorithm (HIRA) for the measurement of oceanic surface wind speed and rain rate in hurricanes. The HIRA is designed to process airborne microwave brightness temperatures from the NOAA, Stepped Frequency Microwave Radiometer (SFMR), which routinely collects data during NOAA hurricane hunter aircraft flights. SFMR measures wind speeds and rain rates at nadir only, but HIRA will soon be integrated with an...
Show moreThis thesis presents the development and validation of the Hurricane Imaging Retrieval Algorithm (HIRA) for the measurement of oceanic surface wind speed and rain rate in hurricanes. The HIRA is designed to process airborne microwave brightness temperatures from the NOAA, Stepped Frequency Microwave Radiometer (SFMR), which routinely collects data during NOAA hurricane hunter aircraft flights. SFMR measures wind speeds and rain rates at nadir only, but HIRA will soon be integrated with an improved surface wind speed model for expanded utilization with next generation microwave hurricane imagers, such as the Hurricane Imaging Radiometer (HIRad). HIRad will expand the nadir only measurements of SFMR to allow the measurement of hurricane surface winds and rain over a wide swath Results for the validation of HIRA retrievals are presented using SFMR brightness temperature data for 22 aircraft flights in 5 hurricanes during 2003-2005. Direct comparisons with the standard NOAA SFMR empirical algorithm provided excellent results for wind speeds up to 70 m/s. and rain rates up to 50 mm/hr.
Show less - Date Issued
- 2006
- Identifier
- CFE0001313, ucf:47024
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001313
- Title
- HURRICANE WIND SPEED AND RAIN RATE MEASUREMENTS USING THE AIRBORNE HURRICANE IMAGING RADIOMETER (HIRAD).
- Creator
-
Amarin, Ruba, Jones, W. Linwood, University of Central Florida
- Abstract / Description
-
This dissertation presents results for an end-to-end computer simulation of a new airborne microwave remote sensor, the Hurricane Imaging Radiometer, HIRAD, which will provide improved hurricane surveillance. The emphasis of this research is the retrieval of hurricane-force wind speeds in the presence of intense rain and over long atmospheric slant path lengths that are encountered across its wide swath. Brightness temperature (Tb) simulations are performed using a forward microwave radiative...
Show moreThis dissertation presents results for an end-to-end computer simulation of a new airborne microwave remote sensor, the Hurricane Imaging Radiometer, HIRAD, which will provide improved hurricane surveillance. The emphasis of this research is the retrieval of hurricane-force wind speeds in the presence of intense rain and over long atmospheric slant path lengths that are encountered across its wide swath. Brightness temperature (Tb) simulations are performed using a forward microwave radiative transfer model (RTM) that includes an ocean surface emissivity model at high wind speeds developed especially for HIRAD high incidence angle measurements and a rain model for the hurricane environment. Also included are realistic sources of errors (e.g., instrument NEDT, antenna pattern convolution of scene Tb, etc.), which are expected in airborne hurricane observations. Case studies are performed using 3D environmental parameters produced by numerical hurricane models for actual hurricanes. These provide realistic ÃÂ"nature runsÃÂ" of rain, water vapor, clouds and surface winds from which simulated HIRAD TbÃÂ's are derived for various flight tracks from a high altitude aircraft. Using these simulated HIRAD measurements, Monte Carlo retrievals of wind speed and rain rate are performed using available databases of sea surface temperatures and climatological hurricane atmospheric parameters (excluding rain) as a priori information. Examples of retrieved hurricane wind speed and rain rate images are presented, and comparisons of the retrieved parameters with the numerical model data are made. Statistical results are presented over a broad range of wind and rain conditions and as a function of path length over the full swath.
Show less - Date Issued
- 2010
- Identifier
- CFE0003082, ucf:48330
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003082